动态视觉传感器中的像素噪声分析

IF 5.2 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Donghwan Seo;Jung-Geun Kim;Injune Yeo;Hyunkeun Lee;Byung-Geun Lee
{"title":"动态视觉传感器中的像素噪声分析","authors":"Donghwan Seo;Jung-Geun Kim;Injune Yeo;Hyunkeun Lee;Byung-Geun Lee","doi":"10.1109/TCSI.2025.3526965","DOIUrl":null,"url":null,"abstract":"To date, pixel noise in a dynamic vision sensor (DVS) has not been accurately analyzed in the literature, and its optimization has been performed empirically. This paper presents a theoretical analysis of the DVS pixel noise. The mean-squared noise voltage at the pixel output from each noise source in a pixel is mathematically derived and verified based on simulations and measurements. A design method to determine the pixel bias currents for a given photocurrent is also presented based on the noise analysis to improve noise performance while maintaining pixel latency. A prototype DVS chip was fabricated in a 110 nm complementary metal-oxide-semiconductor image sensor process and tested under various light and pixel bias conditions. It is shown that the proposed noise analysis and design method successfully predicted the noise performance of the DVS chip.","PeriodicalId":13039,"journal":{"name":"IEEE Transactions on Circuits and Systems I: Regular Papers","volume":"72 3","pages":"1081-1092"},"PeriodicalIF":5.2000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Pixel Noise in Dynamic Vision Sensors\",\"authors\":\"Donghwan Seo;Jung-Geun Kim;Injune Yeo;Hyunkeun Lee;Byung-Geun Lee\",\"doi\":\"10.1109/TCSI.2025.3526965\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To date, pixel noise in a dynamic vision sensor (DVS) has not been accurately analyzed in the literature, and its optimization has been performed empirically. This paper presents a theoretical analysis of the DVS pixel noise. The mean-squared noise voltage at the pixel output from each noise source in a pixel is mathematically derived and verified based on simulations and measurements. A design method to determine the pixel bias currents for a given photocurrent is also presented based on the noise analysis to improve noise performance while maintaining pixel latency. A prototype DVS chip was fabricated in a 110 nm complementary metal-oxide-semiconductor image sensor process and tested under various light and pixel bias conditions. It is shown that the proposed noise analysis and design method successfully predicted the noise performance of the DVS chip.\",\"PeriodicalId\":13039,\"journal\":{\"name\":\"IEEE Transactions on Circuits and Systems I: Regular Papers\",\"volume\":\"72 3\",\"pages\":\"1081-1092\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Circuits and Systems I: Regular Papers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10843121/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems I: Regular Papers","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10843121/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

迄今为止,文献中尚未对动态视觉传感器(DVS)中的像素噪声进行准确分析,并对其进行了经验优化。本文对分布式交换机像素噪声进行了理论分析。在像素中每个噪声源的像素输出处的均方噪声电压是数学推导的,并基于模拟和测量进行了验证。本文还提出了一种基于噪声分析确定给定光电流像素偏置电流的设计方法,以提高噪声性能,同时保持像素延迟。在110 nm互补金属氧化物半导体图像传感器工艺中制作了原型DVS芯片,并在各种光和像素偏置条件下进行了测试。结果表明,所提出的噪声分析和设计方法成功地预测了分布式交换机芯片的噪声性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of Pixel Noise in Dynamic Vision Sensors
To date, pixel noise in a dynamic vision sensor (DVS) has not been accurately analyzed in the literature, and its optimization has been performed empirically. This paper presents a theoretical analysis of the DVS pixel noise. The mean-squared noise voltage at the pixel output from each noise source in a pixel is mathematically derived and verified based on simulations and measurements. A design method to determine the pixel bias currents for a given photocurrent is also presented based on the noise analysis to improve noise performance while maintaining pixel latency. A prototype DVS chip was fabricated in a 110 nm complementary metal-oxide-semiconductor image sensor process and tested under various light and pixel bias conditions. It is shown that the proposed noise analysis and design method successfully predicted the noise performance of the DVS chip.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Circuits and Systems I: Regular Papers
IEEE Transactions on Circuits and Systems I: Regular Papers 工程技术-工程:电子与电气
CiteScore
9.80
自引率
11.80%
发文量
441
审稿时长
2 months
期刊介绍: TCAS I publishes regular papers in the field specified by the theory, analysis, design, and practical implementations of circuits, and the application of circuit techniques to systems and to signal processing. Included is the whole spectrum from basic scientific theory to industrial applications. The field of interest covered includes: - Circuits: Analog, Digital and Mixed Signal Circuits and Systems - Nonlinear Circuits and Systems, Integrated Sensors, MEMS and Systems on Chip, Nanoscale Circuits and Systems, Optoelectronic - Circuits and Systems, Power Electronics and Systems - Software for Analog-and-Logic Circuits and Systems - Control aspects of Circuits and Systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信