降低永磁同步电机轴框电压的新型凸极定子极靴结构

IF 2.1 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Ji-Sung Lee;Jong-Min Ahn;Dong-Kuk Lim;Kyungjin Kang
{"title":"降低永磁同步电机轴框电压的新型凸极定子极靴结构","authors":"Ji-Sung Lee;Jong-Min Ahn;Dong-Kuk Lim;Kyungjin Kang","doi":"10.1109/TMAG.2024.3519602","DOIUrl":null,"url":null,"abstract":"The permanent magnet synchronous motors (PMSMs) are exposed to harmful bearing currents and shaft voltage, which affect their lifetime. This study suggests a novel salient stator pole-shoe (SSPS) structure to suppress the shaft voltage and bearing current. The SSPS interferes with the effect of the electric field between the winding and the rotor, thereby reducing winding-rotor capacitance <inline-formula> <tex-math>$C_{\\text {wr}}$ </tex-math></inline-formula>, which is a major factor for the shaft voltage. An analytical method is proposed to simply account for the fringing effect (FE) and charge sharing effect (CSE) of the electric field to verify the reduction effect of <inline-formula> <tex-math>$C_{\\text {wr}}$ </tex-math></inline-formula> in SSPS. The electrostatic finite element analysis (FEAs) is performed to calculate the parasitic capacitance and compare the difference between the SSPS and the classical pole-shoe model. To validate the effectiveness of the SSPS, the magnetic field transient FEA is performed compared with classical model. Finally, the shaft voltage of two prototypes (SSPS and classical model) is verified by experiment. The SSPS enhances the manufacturability through minimal modifies in geometry, unlike the conventional method of using additional shielding parts. In other words, this study offers a compromise between manufacturability and shaft voltage reduction issue for many researchers and engineers.","PeriodicalId":13405,"journal":{"name":"IEEE Transactions on Magnetics","volume":"61 3","pages":"1-4"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel Salient Stator Pole-Shoe Structure for Reducing Shaft-to-Frame Voltage of the PMSM\",\"authors\":\"Ji-Sung Lee;Jong-Min Ahn;Dong-Kuk Lim;Kyungjin Kang\",\"doi\":\"10.1109/TMAG.2024.3519602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The permanent magnet synchronous motors (PMSMs) are exposed to harmful bearing currents and shaft voltage, which affect their lifetime. This study suggests a novel salient stator pole-shoe (SSPS) structure to suppress the shaft voltage and bearing current. The SSPS interferes with the effect of the electric field between the winding and the rotor, thereby reducing winding-rotor capacitance <inline-formula> <tex-math>$C_{\\\\text {wr}}$ </tex-math></inline-formula>, which is a major factor for the shaft voltage. An analytical method is proposed to simply account for the fringing effect (FE) and charge sharing effect (CSE) of the electric field to verify the reduction effect of <inline-formula> <tex-math>$C_{\\\\text {wr}}$ </tex-math></inline-formula> in SSPS. The electrostatic finite element analysis (FEAs) is performed to calculate the parasitic capacitance and compare the difference between the SSPS and the classical pole-shoe model. To validate the effectiveness of the SSPS, the magnetic field transient FEA is performed compared with classical model. Finally, the shaft voltage of two prototypes (SSPS and classical model) is verified by experiment. The SSPS enhances the manufacturability through minimal modifies in geometry, unlike the conventional method of using additional shielding parts. In other words, this study offers a compromise between manufacturability and shaft voltage reduction issue for many researchers and engineers.\",\"PeriodicalId\":13405,\"journal\":{\"name\":\"IEEE Transactions on Magnetics\",\"volume\":\"61 3\",\"pages\":\"1-4\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Magnetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10806851/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Magnetics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10806851/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

永磁同步电机(pmms)暴露在有害的轴承电流和轴电压下,影响其使用寿命。本文提出了一种新型的凸形定子极靴(SSPS)结构来抑制轴电压和轴承电流。sssps干扰绕组和转子之间电场的作用,从而降低绕组-转子电容,这是影响轴电压的主要因素。提出了一种简单考虑电场边缘效应(FE)和电荷共享效应(CSE)的解析方法,验证了SSPS中$C_{\text {wr}}$的还原效应。通过静电有限元分析计算了寄生电容,并比较了SSPS与经典极-鞋模型的差异。为了验证该方法的有效性,与经典模型进行了磁场瞬态有限元分析。最后,通过实验验证了两种样机(ssp模型和经典模型)的轴电压。与使用额外屏蔽部件的传统方法不同,SSPS通过最小的几何形状修改提高了可制造性。换句话说,本研究为许多研究人员和工程师提供了可制造性和轴电压降低问题之间的折衷方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Novel Salient Stator Pole-Shoe Structure for Reducing Shaft-to-Frame Voltage of the PMSM
The permanent magnet synchronous motors (PMSMs) are exposed to harmful bearing currents and shaft voltage, which affect their lifetime. This study suggests a novel salient stator pole-shoe (SSPS) structure to suppress the shaft voltage and bearing current. The SSPS interferes with the effect of the electric field between the winding and the rotor, thereby reducing winding-rotor capacitance $C_{\text {wr}}$ , which is a major factor for the shaft voltage. An analytical method is proposed to simply account for the fringing effect (FE) and charge sharing effect (CSE) of the electric field to verify the reduction effect of $C_{\text {wr}}$ in SSPS. The electrostatic finite element analysis (FEAs) is performed to calculate the parasitic capacitance and compare the difference between the SSPS and the classical pole-shoe model. To validate the effectiveness of the SSPS, the magnetic field transient FEA is performed compared with classical model. Finally, the shaft voltage of two prototypes (SSPS and classical model) is verified by experiment. The SSPS enhances the manufacturability through minimal modifies in geometry, unlike the conventional method of using additional shielding parts. In other words, this study offers a compromise between manufacturability and shaft voltage reduction issue for many researchers and engineers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Magnetics
IEEE Transactions on Magnetics 工程技术-工程:电子与电气
CiteScore
4.00
自引率
14.30%
发文量
565
审稿时长
4.1 months
期刊介绍: Science and technology related to the basic physics and engineering of magnetism, magnetic materials, applied magnetics, magnetic devices, and magnetic data storage. The IEEE Transactions on Magnetics publishes scholarly articles of archival value as well as tutorial expositions and critical reviews of classical subjects and topics of current interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信