从无费米子回路图验证十阶 QED 对电子反常磁矩的贡献

IF 5.3 2区 物理与天体物理 Q1 Physics and Astronomy
Tatsumi Aoyama, Masashi Hayakawa, Akira Hirayama, Makiko Nio
{"title":"从无费米子回路图验证十阶 QED 对电子反常磁矩的贡献","authors":"Tatsumi Aoyama, Masashi Hayakawa, Akira Hirayama, Makiko Nio","doi":"10.1103/physrevd.111.l031902","DOIUrl":null,"url":null,"abstract":"A discrepancy of approximately 5</a:mn>σ</a:mi></a:mrow></a:math> exists between the two known results for the tenth-order QED contribution to the anomalous magnetic moment of the electron, calculated from Feynman vertex diagrams without fermion loops. To investigate this, we decomposed this contribution into 389 parts based on a self-energy diagram representation, enabling a diagram-by-diagram numerical comparison of the two calculations. No significant discrepancies were found for individual diagrams. However, the numerical differences of the 98 diagrams sharing a common structure were not randomly distributed. The accumulation of these differences resulted in the <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mrow><c:mn>5</c:mn><c:mi>σ</c:mi></c:mrow></c:math> discrepancy. A recalculation with increased statistics in the Monte Carlo integration was performed for these 98 diagrams. By replacing the old values with the new ones for these 98 integrals, we have obtained a revised result of <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mn>6.800</e:mn><e:mo>±</e:mo><e:mn>0.128</e:mn></e:math>, thereby resolving the discrepancy. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"22 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Verification of the tenth-order QED contribution to the anomalous magnetic moment of the electron from diagrams without fermion loops\",\"authors\":\"Tatsumi Aoyama, Masashi Hayakawa, Akira Hirayama, Makiko Nio\",\"doi\":\"10.1103/physrevd.111.l031902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A discrepancy of approximately 5</a:mn>σ</a:mi></a:mrow></a:math> exists between the two known results for the tenth-order QED contribution to the anomalous magnetic moment of the electron, calculated from Feynman vertex diagrams without fermion loops. To investigate this, we decomposed this contribution into 389 parts based on a self-energy diagram representation, enabling a diagram-by-diagram numerical comparison of the two calculations. No significant discrepancies were found for individual diagrams. However, the numerical differences of the 98 diagrams sharing a common structure were not randomly distributed. The accumulation of these differences resulted in the <c:math xmlns:c=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><c:mrow><c:mn>5</c:mn><c:mi>σ</c:mi></c:mrow></c:math> discrepancy. A recalculation with increased statistics in the Monte Carlo integration was performed for these 98 diagrams. By replacing the old values with the new ones for these 98 integrals, we have obtained a revised result of <e:math xmlns:e=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><e:mn>6.800</e:mn><e:mo>±</e:mo><e:mn>0.128</e:mn></e:math>, thereby resolving the discrepancy. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.111.l031902\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.l031902","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

用费米子环的费曼顶点图计算出的十阶QED对电子异常磁矩的贡献的两个已知结果之间存在约5σ的差异。为了研究这一点,我们基于自能量图表示将这一贡献分解为389个部分,从而实现了两个计算的逐图数值比较。个别图表没有发现明显的差异。然而,共享同一结构的98个图的数值差异并不是随机分布的。这些差异的累积导致了5σ差异。对这98个图进行了蒙特卡罗积分中增加统计量的重新计算。将这98个积分的旧值替换为新值,得到修正后的结果为6.800±0.128,从而解决了差异。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Verification of the tenth-order QED contribution to the anomalous magnetic moment of the electron from diagrams without fermion loops
A discrepancy of approximately 5σ exists between the two known results for the tenth-order QED contribution to the anomalous magnetic moment of the electron, calculated from Feynman vertex diagrams without fermion loops. To investigate this, we decomposed this contribution into 389 parts based on a self-energy diagram representation, enabling a diagram-by-diagram numerical comparison of the two calculations. No significant discrepancies were found for individual diagrams. However, the numerical differences of the 98 diagrams sharing a common structure were not randomly distributed. The accumulation of these differences resulted in the 5σ discrepancy. A recalculation with increased statistics in the Monte Carlo integration was performed for these 98 diagrams. By replacing the old values with the new ones for these 98 integrals, we have obtained a revised result of 6.800±0.128, thereby resolving the discrepancy. Published by the American Physical Society 2025
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review D
Physical Review D 物理-天文与天体物理
CiteScore
9.20
自引率
36.00%
发文量
0
审稿时长
2 months
期刊介绍: Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics. PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including: Particle physics experiments, Electroweak interactions, Strong interactions, Lattice field theories, lattice QCD, Beyond the standard model physics, Phenomenological aspects of field theory, general methods, Gravity, cosmology, cosmic rays, Astrophysics and astroparticle physics, General relativity, Formal aspects of field theory, field theory in curved space, String theory, quantum gravity, gauge/gravity duality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信