用于水电解的坚固超薄充孔阴离子交换膜

IF 3.5 3区 工程技术 Q2 ENGINEERING, CHEMICAL
AIChE Journal Pub Date : 2025-02-25 DOI:10.1002/aic.18769
Wenhao Zou, Kang Peng, Rene Ling, Qixuan Li, Yulin Liu, Tongwen Xu, Zhengjin Yang
{"title":"用于水电解的坚固超薄充孔阴离子交换膜","authors":"Wenhao Zou, Kang Peng, Rene Ling, Qixuan Li, Yulin Liu, Tongwen Xu, Zhengjin Yang","doi":"10.1002/aic.18769","DOIUrl":null,"url":null,"abstract":"Ultrathin and robust composite anion exchange membranes are developed by infiltrating poly(biphenyl piperidinium) solution into PE porous substrate and overcoming the poor wettability of the PE substrate in a pore-filling procedure. By strengthening the binding between ionomers and the porous substrate via a physical interlocking strategy, symmetric and dense composite membranes were developed. A representative membrane, namely PE-PBP-30%, displays a tensile strength exceeding 118 MPa, an elongation at break around 87%, and maintains H<sub>2</sub> permeability as low as 1.85 Barrer at 2 bar. Anion exchange membrane water electrolysis (AEMWE) based on the PE-PBP-30% could be operated at a current density of up to 800 mA/cm<sup>2</sup> at 1.8 V and demonstrates stable performance at 500 mA/cm<sup>2</sup> and 60°C for 600 h with a voltage increase rate of 0.25 mV/h. This study explores the possibility of combining traditional homogeneous AEMs with diaphragm membranes for AEMWE and provides insights into the development of AEMWEs using pore-filling membranes.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"29 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust and ultrathin pore-filling anion exchange membranes for water electrolysis\",\"authors\":\"Wenhao Zou, Kang Peng, Rene Ling, Qixuan Li, Yulin Liu, Tongwen Xu, Zhengjin Yang\",\"doi\":\"10.1002/aic.18769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ultrathin and robust composite anion exchange membranes are developed by infiltrating poly(biphenyl piperidinium) solution into PE porous substrate and overcoming the poor wettability of the PE substrate in a pore-filling procedure. By strengthening the binding between ionomers and the porous substrate via a physical interlocking strategy, symmetric and dense composite membranes were developed. A representative membrane, namely PE-PBP-30%, displays a tensile strength exceeding 118 MPa, an elongation at break around 87%, and maintains H<sub>2</sub> permeability as low as 1.85 Barrer at 2 bar. Anion exchange membrane water electrolysis (AEMWE) based on the PE-PBP-30% could be operated at a current density of up to 800 mA/cm<sup>2</sup> at 1.8 V and demonstrates stable performance at 500 mA/cm<sup>2</sup> and 60°C for 600 h with a voltage increase rate of 0.25 mV/h. This study explores the possibility of combining traditional homogeneous AEMs with diaphragm membranes for AEMWE and provides insights into the development of AEMWEs using pore-filling membranes.\",\"PeriodicalId\":120,\"journal\":{\"name\":\"AIChE Journal\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIChE Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/aic.18769\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/aic.18769","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

通过将聚联苯吡啶溶液渗透到PE多孔基材中,克服PE基材在孔隙填充过程中润湿性差的问题,研制出超薄、坚固的复合阴离子交换膜。通过物理联锁策略加强离聚体与多孔基板之间的结合,开发出对称且致密的复合膜。具有代表性的PE-PBP-30%膜的抗拉强度超过118 MPa,断裂伸长率约为87%,在2 bar时H2渗透率低至1.85 Barrer。基于PE-PBP-30%的阴离子交换膜电解(AEMWE)可以在1.8 V电流密度高达800 mA/cm2的情况下工作,在500 mA/cm2、60℃条件下,以0.25 mV/h的电压递增速率运行600 h,具有稳定的性能。本研究探索了将传统的均质膜与隔膜膜结合用于AEMWE的可能性,并为利用孔隙填充膜开发AEMWE提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust and ultrathin pore-filling anion exchange membranes for water electrolysis
Ultrathin and robust composite anion exchange membranes are developed by infiltrating poly(biphenyl piperidinium) solution into PE porous substrate and overcoming the poor wettability of the PE substrate in a pore-filling procedure. By strengthening the binding between ionomers and the porous substrate via a physical interlocking strategy, symmetric and dense composite membranes were developed. A representative membrane, namely PE-PBP-30%, displays a tensile strength exceeding 118 MPa, an elongation at break around 87%, and maintains H2 permeability as low as 1.85 Barrer at 2 bar. Anion exchange membrane water electrolysis (AEMWE) based on the PE-PBP-30% could be operated at a current density of up to 800 mA/cm2 at 1.8 V and demonstrates stable performance at 500 mA/cm2 and 60°C for 600 h with a voltage increase rate of 0.25 mV/h. This study explores the possibility of combining traditional homogeneous AEMs with diaphragm membranes for AEMWE and provides insights into the development of AEMWEs using pore-filling membranes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AIChE Journal
AIChE Journal 工程技术-工程:化工
CiteScore
7.10
自引率
10.80%
发文量
411
审稿时长
3.6 months
期刊介绍: The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering. The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field. Articles are categorized according to the following topical areas: Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food Inorganic Materials: Synthesis and Processing Particle Technology and Fluidization Process Systems Engineering Reaction Engineering, Kinetics and Catalysis Separations: Materials, Devices and Processes Soft Materials: Synthesis, Processing and Products Thermodynamics and Molecular-Scale Phenomena Transport Phenomena and Fluid Mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信