室温极值超灵敏光电探测

IF 20.6 Q1 OPTICS
Tuntan Wu, Yongzhen Li, Qiangguo Zhou, Qinxi Qiu, Yanqing Gao, Wei Zhou, Niangjuan Yao, Junhao Chu, Zhiming Huang
{"title":"室温极值超灵敏光电探测","authors":"Tuntan Wu, Yongzhen Li, Qiangguo Zhou, Qinxi Qiu, Yanqing Gao, Wei Zhou, Niangjuan Yao, Junhao Chu, Zhiming Huang","doi":"10.1038/s41377-024-01701-0","DOIUrl":null,"url":null,"abstract":"<p>Room-temperature photodetection holds pivotal significance in diverse applications such as sensing, imaging, telecommunications, and environmental remote sensing due to its simplicity, versatility, and indispensability. Although different kinds of photon and thermal detectors have been realized, high sensitivity of photodetection with room temperature extremum is not reported until now. Herein, we find evident peaks in the photoelectric response originated from the anomalous excitonic insulator phase transition in tantalum nickel selenide (Ta<sub>2</sub>NiSe<sub>5</sub>) for room-temperature optimized photodetection from visible light to terahertz ranges. Extreme sensitivity of photoconductive detector with specific detectivity (D*) of 5.3 × 10<sup>11</sup> cm·Hz<sup>1/2</sup>·W<sup>−</sup><sup>1</sup> and electrical bandwidth of 360 kHz is reached in the terahertz range, which is one to two orders of magnitude improvement compared to that of the state-of-the-art room-temperature terahertz detectors. The van der Waals heterostructure of Ta<sub>2</sub>NiSe<sub>5</sub>/WS<sub>2</sub> is further constructed to suppress the dark current at room temperature with much improved ambient D* of 4.1 × 10<sup>12</sup> cm·Hz<sup>1/2</sup>·W<sup>−1</sup> in the visible wavelength, rivaling that of the typical photodetectors, and superior photoelectric performance in the terahertz range compared to the photoconductor device. Our results open a new avenue for optoelectronics via excitonic insulator phase transition in broad wavelength bands and pave the way for applications in sensitive environmental and remote sensing at room temperature.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"49 1","pages":""},"PeriodicalIF":20.6000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrasensitive photoelectric detection with room temperature extremum\",\"authors\":\"Tuntan Wu, Yongzhen Li, Qiangguo Zhou, Qinxi Qiu, Yanqing Gao, Wei Zhou, Niangjuan Yao, Junhao Chu, Zhiming Huang\",\"doi\":\"10.1038/s41377-024-01701-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Room-temperature photodetection holds pivotal significance in diverse applications such as sensing, imaging, telecommunications, and environmental remote sensing due to its simplicity, versatility, and indispensability. Although different kinds of photon and thermal detectors have been realized, high sensitivity of photodetection with room temperature extremum is not reported until now. Herein, we find evident peaks in the photoelectric response originated from the anomalous excitonic insulator phase transition in tantalum nickel selenide (Ta<sub>2</sub>NiSe<sub>5</sub>) for room-temperature optimized photodetection from visible light to terahertz ranges. Extreme sensitivity of photoconductive detector with specific detectivity (D*) of 5.3 × 10<sup>11</sup> cm·Hz<sup>1/2</sup>·W<sup>−</sup><sup>1</sup> and electrical bandwidth of 360 kHz is reached in the terahertz range, which is one to two orders of magnitude improvement compared to that of the state-of-the-art room-temperature terahertz detectors. The van der Waals heterostructure of Ta<sub>2</sub>NiSe<sub>5</sub>/WS<sub>2</sub> is further constructed to suppress the dark current at room temperature with much improved ambient D* of 4.1 × 10<sup>12</sup> cm·Hz<sup>1/2</sup>·W<sup>−1</sup> in the visible wavelength, rivaling that of the typical photodetectors, and superior photoelectric performance in the terahertz range compared to the photoconductor device. Our results open a new avenue for optoelectronics via excitonic insulator phase transition in broad wavelength bands and pave the way for applications in sensitive environmental and remote sensing at room temperature.</p>\",\"PeriodicalId\":18069,\"journal\":{\"name\":\"Light-Science & Applications\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":20.6000,\"publicationDate\":\"2025-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Light-Science & Applications\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1038/s41377-024-01701-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-024-01701-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

由于其简单、多功能性和不可或缺性,室温光探测在传感、成像、电信和环境遥感等多种应用中具有举足轻重的意义。虽然已经实现了不同类型的光子探测器和热探测器,但具有室温极值的高灵敏度光探测迄今尚未见报道。在此,我们发现硒化钽镍(Ta2NiSe5)在可见光到太赫兹范围的室温优化光探测中,由于异常激子绝缘体相变引起的光电响应明显峰。光导探测器在太赫兹范围内达到了极高的灵敏度,比探测率(D*)为5.3 × 1011 cm·Hz1/2·W−1,电带宽为360 kHz,与目前最先进的室温太赫兹探测器相比,提高了一到两个数量级。进一步构建了Ta2NiSe5/WS2的范德华异质结构,在室温下抑制暗电流,在可见光波段的环境D*大大提高到4.1 × 1012 cm·Hz1/2·W−1,与典型的光电探测器相媲美,在太赫兹范围内与光电导体器件相比具有优越的光电性能。我们的研究结果为宽波段激子绝缘体相变光电子学开辟了新的途径,并为室温敏感环境和遥感的应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ultrasensitive photoelectric detection with room temperature extremum

Ultrasensitive photoelectric detection with room temperature extremum

Room-temperature photodetection holds pivotal significance in diverse applications such as sensing, imaging, telecommunications, and environmental remote sensing due to its simplicity, versatility, and indispensability. Although different kinds of photon and thermal detectors have been realized, high sensitivity of photodetection with room temperature extremum is not reported until now. Herein, we find evident peaks in the photoelectric response originated from the anomalous excitonic insulator phase transition in tantalum nickel selenide (Ta2NiSe5) for room-temperature optimized photodetection from visible light to terahertz ranges. Extreme sensitivity of photoconductive detector with specific detectivity (D*) of 5.3 × 1011 cm·Hz1/2·W1 and electrical bandwidth of 360 kHz is reached in the terahertz range, which is one to two orders of magnitude improvement compared to that of the state-of-the-art room-temperature terahertz detectors. The van der Waals heterostructure of Ta2NiSe5/WS2 is further constructed to suppress the dark current at room temperature with much improved ambient D* of 4.1 × 1012 cm·Hz1/2·W−1 in the visible wavelength, rivaling that of the typical photodetectors, and superior photoelectric performance in the terahertz range compared to the photoconductor device. Our results open a new avenue for optoelectronics via excitonic insulator phase transition in broad wavelength bands and pave the way for applications in sensitive environmental and remote sensing at room temperature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Light-Science & Applications
Light-Science & Applications 数理科学, 物理学I, 光学, 凝聚态物性 II :电子结构、电学、磁学和光学性质, 无机非金属材料, 无机非金属类光电信息与功能材料, 工程与材料, 信息科学, 光学和光电子学, 光学和光电子材料, 非线性光学与量子光学
自引率
0.00%
发文量
803
审稿时长
2.1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信