局部结构灵活性驱动寡胚性在计算设计的蛋白质组装

Alena Khmelinskaia, Neville P. Bethel, Farzad Fatehi, Bhoomika Basu Mallik, Aleksandar Antanasijevic, Andrew J. Borst, Szu-Hsueh Lai, Ho Yeung Chim, Jing Yang ‘John’ Wang, Marcos C. Miranda, Andrew M. Watkins, Cassandra Ogohara, Shane Caldwell, Mengyu Wu, Albert J. R. Heck, David Veesler, Andrew B. Ward, David Baker, Reidun Twarock, Neil P. King
{"title":"局部结构灵活性驱动寡胚性在计算设计的蛋白质组装","authors":"Alena Khmelinskaia, Neville P. Bethel, Farzad Fatehi, Bhoomika Basu Mallik, Aleksandar Antanasijevic, Andrew J. Borst, Szu-Hsueh Lai, Ho Yeung Chim, Jing Yang ‘John’ Wang, Marcos C. Miranda, Andrew M. Watkins, Cassandra Ogohara, Shane Caldwell, Mengyu Wu, Albert J. R. Heck, David Veesler, Andrew B. Ward, David Baker, Reidun Twarock, Neil P. King","doi":"10.1038/s41594-025-01490-z","DOIUrl":null,"url":null,"abstract":"<p>Many naturally occurring protein assemblies have dynamic structures that allow them to perform specialized functions. Although computational methods for designing novel self-assembling proteins have advanced substantially over the past decade, they primarily focus on designing static structures. Here we characterize three distinct computationally designed protein assemblies that exhibit unanticipated structural diversity arising from flexibility in their subunits. Cryo-EM single-particle reconstructions and native mass spectrometry reveal two distinct architectures for two assemblies, while six cryo-EM reconstructions for the third likely represent a subset of its solution-phase structures. Structural modeling and molecular dynamics simulations indicate that constrained flexibility within the subunits of each assembly promotes a defined range of architectures rather than nonspecific aggregation. Redesigning the flexible region in one building block rescues the intended monomorphic assembly. These findings highlight structural flexibility as a powerful design principle, enabling exploration of new structural and functional spaces in protein assembly design.</p>","PeriodicalId":18822,"journal":{"name":"Nature structural & molecular biology","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local structural flexibility drives oligomorphism in computationally designed protein assemblies\",\"authors\":\"Alena Khmelinskaia, Neville P. Bethel, Farzad Fatehi, Bhoomika Basu Mallik, Aleksandar Antanasijevic, Andrew J. Borst, Szu-Hsueh Lai, Ho Yeung Chim, Jing Yang ‘John’ Wang, Marcos C. Miranda, Andrew M. Watkins, Cassandra Ogohara, Shane Caldwell, Mengyu Wu, Albert J. R. Heck, David Veesler, Andrew B. Ward, David Baker, Reidun Twarock, Neil P. King\",\"doi\":\"10.1038/s41594-025-01490-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Many naturally occurring protein assemblies have dynamic structures that allow them to perform specialized functions. Although computational methods for designing novel self-assembling proteins have advanced substantially over the past decade, they primarily focus on designing static structures. Here we characterize three distinct computationally designed protein assemblies that exhibit unanticipated structural diversity arising from flexibility in their subunits. Cryo-EM single-particle reconstructions and native mass spectrometry reveal two distinct architectures for two assemblies, while six cryo-EM reconstructions for the third likely represent a subset of its solution-phase structures. Structural modeling and molecular dynamics simulations indicate that constrained flexibility within the subunits of each assembly promotes a defined range of architectures rather than nonspecific aggregation. Redesigning the flexible region in one building block rescues the intended monomorphic assembly. These findings highlight structural flexibility as a powerful design principle, enabling exploration of new structural and functional spaces in protein assembly design.</p>\",\"PeriodicalId\":18822,\"journal\":{\"name\":\"Nature structural & molecular biology\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature structural & molecular biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s41594-025-01490-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature structural & molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41594-025-01490-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

许多自然产生的蛋白质组合具有动态结构,使它们能够执行特定的功能。尽管设计新型自组装蛋白质的计算方法在过去十年中取得了长足的进步,但它们主要集中在设计静态结构上。在这里,我们描述了三种不同的计算设计的蛋白质组件,它们表现出意想不到的结构多样性,这些多样性来自于它们亚基的灵活性。Cryo-EM单粒子重建和天然质谱分析揭示了两个组件的两种不同的结构,而第三个组件的六个Cryo-EM重建可能代表了其溶液相结构的一个子集。结构建模和分子动力学模拟表明,每个装配体的亚基内受限的灵活性促进了结构的定义范围,而不是非特异性聚集。在一个构建块中重新设计柔性区域可以挽救预期的单态组装。这些发现突出了结构灵活性作为一个强大的设计原则,使探索新的结构和功能空间在蛋白质组装设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Local structural flexibility drives oligomorphism in computationally designed protein assemblies

Local structural flexibility drives oligomorphism in computationally designed protein assemblies

Many naturally occurring protein assemblies have dynamic structures that allow them to perform specialized functions. Although computational methods for designing novel self-assembling proteins have advanced substantially over the past decade, they primarily focus on designing static structures. Here we characterize three distinct computationally designed protein assemblies that exhibit unanticipated structural diversity arising from flexibility in their subunits. Cryo-EM single-particle reconstructions and native mass spectrometry reveal two distinct architectures for two assemblies, while six cryo-EM reconstructions for the third likely represent a subset of its solution-phase structures. Structural modeling and molecular dynamics simulations indicate that constrained flexibility within the subunits of each assembly promotes a defined range of architectures rather than nonspecific aggregation. Redesigning the flexible region in one building block rescues the intended monomorphic assembly. These findings highlight structural flexibility as a powerful design principle, enabling exploration of new structural and functional spaces in protein assembly design.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信