乙烯通过erf5 -褪黑激素- erf104通路增强VvMYB14表达调控苯丙素途径

IF 8.7 1区 农林科学 Q1 Agricultural and Biological Sciences
Shiwei Gao, Fei Wang, Shengnan Wang, Jiapeng Diao, Shuxia Lan, Yujiao Xu, Xinning Lyu, Hui Kang, Yuxin Yao
{"title":"乙烯通过erf5 -褪黑激素- erf104通路增强VvMYB14表达调控苯丙素途径","authors":"Shiwei Gao, Fei Wang, Shengnan Wang, Jiapeng Diao, Shuxia Lan, Yujiao Xu, Xinning Lyu, Hui Kang, Yuxin Yao","doi":"10.1093/hr/uhaf061","DOIUrl":null,"url":null,"abstract":"The interaction between ethylene and melatonin in the regulation of polyphenol metabolism and the underlying mechanism remain largely unclear. This work demonstrated that ethylene treatment increased melatonin biosynthesis by inducing the VvASMT expression in grape seeds. Ethylene-induced VvERF5 transactivated VvASMT via binding to the ERE element in its promoter. VvERF5 overexpression led to an increase in melatonin biosynthesis while its suppression generated the opposite results in grape seeds, calli and/or Arabidopsis seeds. A melatonin responsive element (MTRE) was identified, and melatonin-induced VvERF104 was found to bind to the MTRE of the VvMYB14 promoter and activate its expression. VvMYB14 overexpression widely modified the expression of genes in phenylpropanoid pathway and phenolic compound content in grape seeds. DAP-seq revealed that the MEME-1 motif was the most likely binding sites of VvMYB14. VvPAL, VvC4H and VvCHS were verified to be the target genes of VvMYB14. Additionally, the overexpression of VvERF5 or VvERF104 increased the expression of VvPAL, VvC4H and VvCHS, as well as the levels of the corresponding metabolites. Moreover, the roles of VvERF5, VvASMT and VvERF104 in mediating ethylene-induced changes in phenylpropanoid pathway were elucidated using their suppressing seeds. Collectively, ethylene increased the VvMYB14 expression via the pathway of ERF5-melatonin-ERF104 and thereby modified phenylpropanoid pathway.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"27 1","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ethylene Modulates the Phenylpropanoid Pathway by Enhancing VvMYB14 Expression via the ERF5-Melatonin-ERF104 Pathway in Grape Seeds\",\"authors\":\"Shiwei Gao, Fei Wang, Shengnan Wang, Jiapeng Diao, Shuxia Lan, Yujiao Xu, Xinning Lyu, Hui Kang, Yuxin Yao\",\"doi\":\"10.1093/hr/uhaf061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The interaction between ethylene and melatonin in the regulation of polyphenol metabolism and the underlying mechanism remain largely unclear. This work demonstrated that ethylene treatment increased melatonin biosynthesis by inducing the VvASMT expression in grape seeds. Ethylene-induced VvERF5 transactivated VvASMT via binding to the ERE element in its promoter. VvERF5 overexpression led to an increase in melatonin biosynthesis while its suppression generated the opposite results in grape seeds, calli and/or Arabidopsis seeds. A melatonin responsive element (MTRE) was identified, and melatonin-induced VvERF104 was found to bind to the MTRE of the VvMYB14 promoter and activate its expression. VvMYB14 overexpression widely modified the expression of genes in phenylpropanoid pathway and phenolic compound content in grape seeds. DAP-seq revealed that the MEME-1 motif was the most likely binding sites of VvMYB14. VvPAL, VvC4H and VvCHS were verified to be the target genes of VvMYB14. Additionally, the overexpression of VvERF5 or VvERF104 increased the expression of VvPAL, VvC4H and VvCHS, as well as the levels of the corresponding metabolites. Moreover, the roles of VvERF5, VvASMT and VvERF104 in mediating ethylene-induced changes in phenylpropanoid pathway were elucidated using their suppressing seeds. Collectively, ethylene increased the VvMYB14 expression via the pathway of ERF5-melatonin-ERF104 and thereby modified phenylpropanoid pathway.\",\"PeriodicalId\":13179,\"journal\":{\"name\":\"Horticulture Research\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2025-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Horticulture Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1093/hr/uhaf061\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticulture Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/hr/uhaf061","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

乙烯和褪黑激素在调节多酚代谢中的相互作用及其潜在机制仍不清楚。本研究表明,乙烯处理通过诱导葡萄种子中VvASMT的表达来增加褪黑素的生物合成。乙烯诱导的VvERF5通过结合启动子中的ERE元件来反激活VvASMT。VvERF5过表达导致褪黑素生物合成增加,而在葡萄种子、愈伤组织和/或拟南芥种子中,其抑制产生相反的结果。发现褪黑素反应元件(MTRE),并发现褪黑素诱导的VvERF104与VvMYB14启动子的MTRE结合并激活其表达。VvMYB14过表达广泛地改变了葡萄种子中苯丙素途径相关基因的表达和酚类化合物含量。DAP-seq显示,MEME-1基序是VvMYB14最可能的结合位点。证实VvPAL、VvC4H和VvCHS是VvMYB14的靶基因。此外,VvERF5或VvERF104的过表达增加了VvPAL、VvC4H和VvCHS的表达,以及相应代谢产物的水平。此外,通过VvERF5、VvASMT和VvERF104的抑制种子,阐明了它们在介导乙烯诱导的苯丙素通路变化中的作用。乙烯通过erf5 -褪黑激素- erf104通路增加了VvMYB14的表达,从而修饰了苯丙素通路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ethylene Modulates the Phenylpropanoid Pathway by Enhancing VvMYB14 Expression via the ERF5-Melatonin-ERF104 Pathway in Grape Seeds
The interaction between ethylene and melatonin in the regulation of polyphenol metabolism and the underlying mechanism remain largely unclear. This work demonstrated that ethylene treatment increased melatonin biosynthesis by inducing the VvASMT expression in grape seeds. Ethylene-induced VvERF5 transactivated VvASMT via binding to the ERE element in its promoter. VvERF5 overexpression led to an increase in melatonin biosynthesis while its suppression generated the opposite results in grape seeds, calli and/or Arabidopsis seeds. A melatonin responsive element (MTRE) was identified, and melatonin-induced VvERF104 was found to bind to the MTRE of the VvMYB14 promoter and activate its expression. VvMYB14 overexpression widely modified the expression of genes in phenylpropanoid pathway and phenolic compound content in grape seeds. DAP-seq revealed that the MEME-1 motif was the most likely binding sites of VvMYB14. VvPAL, VvC4H and VvCHS were verified to be the target genes of VvMYB14. Additionally, the overexpression of VvERF5 or VvERF104 increased the expression of VvPAL, VvC4H and VvCHS, as well as the levels of the corresponding metabolites. Moreover, the roles of VvERF5, VvASMT and VvERF104 in mediating ethylene-induced changes in phenylpropanoid pathway were elucidated using their suppressing seeds. Collectively, ethylene increased the VvMYB14 expression via the pathway of ERF5-melatonin-ERF104 and thereby modified phenylpropanoid pathway.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Horticulture Research
Horticulture Research Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
11.20
自引率
6.90%
发文量
367
审稿时长
20 weeks
期刊介绍: Horticulture Research, an open access journal affiliated with Nanjing Agricultural University, has achieved the prestigious ranking of number one in the Horticulture category of the Journal Citation Reports ™ from Clarivate, 2022. As a leading publication in the field, the journal is dedicated to disseminating original research articles, comprehensive reviews, insightful perspectives, thought-provoking comments, and valuable correspondence articles and letters to the editor. Its scope encompasses all vital aspects of horticultural plants and disciplines, such as biotechnology, breeding, cellular and molecular biology, evolution, genetics, inter-species interactions, physiology, and the origination and domestication of crops.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信