基于碎片充电容量的数据驱动锂离子电池可用容量估算。

Zhen Zhang, Xin Gu, Yuhao Zhu, Teng Wang, Yichang Gong, Yunlong Shang
{"title":"基于碎片充电容量的数据驱动锂离子电池可用容量估算。","authors":"Zhen Zhang, Xin Gu, Yuhao Zhu, Teng Wang, Yichang Gong, Yunlong Shang","doi":"10.1038/s44172-025-00372-y","DOIUrl":null,"url":null,"abstract":"<p><p>Efficient and accurate available capacity estimation of lithium-ion batteries is crucial for ensuring the safe and effective operation of electric vehicles. However, incomplete charging cycles in practical applications challenge conventional methods. Here we manipulate fragmented charge capacity data to estimate available capacity without complete charging information. Considering correlation, charging time, and initial state of charge, 36 feature combinations are available for estimation. The basic machine learning model is established on 11,500 cyclic samples, and a transfer learning model is fine-tuned and validated on multiple datasets. The validation results indicate that the best root-mean-square error for the basic model is 0.012. Furthermore, the RMSE demonstrates consistent stability across different datasets in the transfer learning model, with fluctuations within 0.5% when considering feature combinations across cycles with spacings of 5, 10, and 20. This work highlights the promise of available capacity estimation using actual, readily accessible fragmented charge capacity data.</p>","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":"4 1","pages":"32"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11850593/pdf/","citationCount":"0","resultStr":"{\"title\":\"Data-driven available capacity estimation of lithium-ion batteries based on fragmented charge capacity.\",\"authors\":\"Zhen Zhang, Xin Gu, Yuhao Zhu, Teng Wang, Yichang Gong, Yunlong Shang\",\"doi\":\"10.1038/s44172-025-00372-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Efficient and accurate available capacity estimation of lithium-ion batteries is crucial for ensuring the safe and effective operation of electric vehicles. However, incomplete charging cycles in practical applications challenge conventional methods. Here we manipulate fragmented charge capacity data to estimate available capacity without complete charging information. Considering correlation, charging time, and initial state of charge, 36 feature combinations are available for estimation. The basic machine learning model is established on 11,500 cyclic samples, and a transfer learning model is fine-tuned and validated on multiple datasets. The validation results indicate that the best root-mean-square error for the basic model is 0.012. Furthermore, the RMSE demonstrates consistent stability across different datasets in the transfer learning model, with fluctuations within 0.5% when considering feature combinations across cycles with spacings of 5, 10, and 20. This work highlights the promise of available capacity estimation using actual, readily accessible fragmented charge capacity data.</p>\",\"PeriodicalId\":72644,\"journal\":{\"name\":\"Communications engineering\",\"volume\":\"4 1\",\"pages\":\"32\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11850593/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s44172-025-00372-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44172-025-00372-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高效准确的锂离子电池可用容量估算是保证电动汽车安全有效运行的关键。然而,在实际应用中,不完全充电周期对传统方法提出了挑战。本文在没有完整充电信息的情况下,利用碎片化的充电容量数据来估计可用容量。考虑到相关性、充电时间和初始充电状态,共有36个特征组合可供估计。在11500个循环样本上建立了基本的机器学习模型,并在多个数据集上对迁移学习模型进行了微调和验证。验证结果表明,基本模型的最佳均方根误差为0.012。此外,RMSE在迁移学习模型的不同数据集上表现出一致的稳定性,当考虑间隔为5、10和20的周期特征组合时,其波动在0.5%以内。这项工作强调了使用实际的、易于访问的碎片充电容量数据进行可用容量估计的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data-driven available capacity estimation of lithium-ion batteries based on fragmented charge capacity.

Efficient and accurate available capacity estimation of lithium-ion batteries is crucial for ensuring the safe and effective operation of electric vehicles. However, incomplete charging cycles in practical applications challenge conventional methods. Here we manipulate fragmented charge capacity data to estimate available capacity without complete charging information. Considering correlation, charging time, and initial state of charge, 36 feature combinations are available for estimation. The basic machine learning model is established on 11,500 cyclic samples, and a transfer learning model is fine-tuned and validated on multiple datasets. The validation results indicate that the best root-mean-square error for the basic model is 0.012. Furthermore, the RMSE demonstrates consistent stability across different datasets in the transfer learning model, with fluctuations within 0.5% when considering feature combinations across cycles with spacings of 5, 10, and 20. This work highlights the promise of available capacity estimation using actual, readily accessible fragmented charge capacity data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信