Llama 3.1 405B可与GPT-4相媲美,用于从血栓切除术报告中提取数据-迈向安全数据提取的一步

IF 2.4 3区 医学 Q2 CLINICAL NEUROLOGY
Nils C Lehnen, Johannes Kürsch, Barbara D Wichtmann, Moritz Wolter, Zeynep Bendella, Felix J Bode, Hanna Zimmermann, Alexander Radbruch, Philipp Vollmuth, Franziska Dorn
{"title":"Llama 3.1 405B可与GPT-4相媲美,用于从血栓切除术报告中提取数据-迈向安全数据提取的一步","authors":"Nils C Lehnen, Johannes Kürsch, Barbara D Wichtmann, Moritz Wolter, Zeynep Bendella, Felix J Bode, Hanna Zimmermann, Alexander Radbruch, Philipp Vollmuth, Franziska Dorn","doi":"10.1007/s00062-025-01500-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>GPT‑4 has been shown to correctly extract procedural details from free-text reports on mechanical thrombectomy. However, GPT may not be suitable for analyzing reports containing personal data. The purpose of this study was to evaluate the ability of the large language models (LLM) Llama3.1 405B, Llama3 70B, Llama3 8B, and Mixtral 8X7B, that can be operated offline, to extract procedural details from free-text reports on mechanical thrombectomies.</p><p><strong>Methods: </strong>Free-text reports on mechanical thrombectomy from two institutions were included. A detailed prompt was used in German and English languages. The ability of the LLMs to extract procedural data was compared to GPT‑4 using McNemar's test. The manual data entries made by an interventional neuroradiologist served as the reference standard.</p><p><strong>Results: </strong>100 reports from institution 1 (mean age 74.7 ± 13.2 years; 53 females) and 30 reports from institution 2 (mean age 72.7 ± 13.5 years; 18 males) were included. Llama 3.1 405B extracted 2619 of 2800 data points correctly (93.5% [95%CI: 92.6%, 94.4%], p = 0.39 vs. GPT-4). Llama3 70B with the English prompt extracted 2537 data points correctly (90.6% [95%CI: 89.5%, 91.7%], p < 0.001 vs. GPT-4), and 2471 (88.2% [95%CI: 87.0%, 89.4%], p < 0.001 vs. GPT-4) with the German prompt. Llama 3 8B extracted 2314 data points correctly (86.1% [95%CI: 84.8%, 87.4%], p < 0.001 vs. GPT-4), and Mixtral 8X7B extracted 2411 (86.1% [95%CI: 84.8%, 87.4%], p < 0.001 vs. GPT-4) correctly.</p><p><strong>Conclusion: </strong>Llama 3.1 405B was equal to GPT‑4 for data extraction from free-text reports on mechanical thrombectomies and may represent a data secure alternative, when operated locally.</p>","PeriodicalId":49298,"journal":{"name":"Clinical Neuroradiology","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Llama 3.1 405B Is Comparable to GPT-4 for Extraction of Data from Thrombectomy Reports-A Step Towards Secure Data Extraction.\",\"authors\":\"Nils C Lehnen, Johannes Kürsch, Barbara D Wichtmann, Moritz Wolter, Zeynep Bendella, Felix J Bode, Hanna Zimmermann, Alexander Radbruch, Philipp Vollmuth, Franziska Dorn\",\"doi\":\"10.1007/s00062-025-01500-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>GPT‑4 has been shown to correctly extract procedural details from free-text reports on mechanical thrombectomy. However, GPT may not be suitable for analyzing reports containing personal data. The purpose of this study was to evaluate the ability of the large language models (LLM) Llama3.1 405B, Llama3 70B, Llama3 8B, and Mixtral 8X7B, that can be operated offline, to extract procedural details from free-text reports on mechanical thrombectomies.</p><p><strong>Methods: </strong>Free-text reports on mechanical thrombectomy from two institutions were included. A detailed prompt was used in German and English languages. The ability of the LLMs to extract procedural data was compared to GPT‑4 using McNemar's test. The manual data entries made by an interventional neuroradiologist served as the reference standard.</p><p><strong>Results: </strong>100 reports from institution 1 (mean age 74.7 ± 13.2 years; 53 females) and 30 reports from institution 2 (mean age 72.7 ± 13.5 years; 18 males) were included. Llama 3.1 405B extracted 2619 of 2800 data points correctly (93.5% [95%CI: 92.6%, 94.4%], p = 0.39 vs. GPT-4). Llama3 70B with the English prompt extracted 2537 data points correctly (90.6% [95%CI: 89.5%, 91.7%], p < 0.001 vs. GPT-4), and 2471 (88.2% [95%CI: 87.0%, 89.4%], p < 0.001 vs. GPT-4) with the German prompt. Llama 3 8B extracted 2314 data points correctly (86.1% [95%CI: 84.8%, 87.4%], p < 0.001 vs. GPT-4), and Mixtral 8X7B extracted 2411 (86.1% [95%CI: 84.8%, 87.4%], p < 0.001 vs. GPT-4) correctly.</p><p><strong>Conclusion: </strong>Llama 3.1 405B was equal to GPT‑4 for data extraction from free-text reports on mechanical thrombectomies and may represent a data secure alternative, when operated locally.</p>\",\"PeriodicalId\":49298,\"journal\":{\"name\":\"Clinical Neuroradiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Neuroradiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00062-025-01500-z\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Neuroradiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00062-025-01500-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:GPT‑4已被证明可以正确地从机械取栓的自由文本报告中提取程序细节。但是,GPT可能不适合分析包含个人数据的报告。本研究的目的是评估可离线运行的大型语言模型(LLM) Llama3.1 405B、Llama3 70B、Llama3 8B和Mixtral 8X7B从机械性血栓切除术的自由文本报告中提取手术细节的能力。方法:纳入两家机构关于机械取栓的自由文本报告。在德语和英语中使用了详细的提示。使用McNemar的测试将llm提取程序数据的能力与GPT‑4进行比较。介入神经放射学家手工录入的数据作为参考标准。结果:来自第一机构的100例报告(平均年龄74.7 ±13.2岁;53名女性)和30名来自第二机构的报告(平均年龄72.7 ±13.5岁;包括18名男性)。Llama 3.1 405B正确提取了2800个数据点中的2619个(93.5% [95%CI: 92.6%, 94.4%], p = 0.39 vs GPT-4)。英文提示的Llama3 70B正确提取了2537个数据点(90.6% [95%CI: 89.5%, 91.7%], p 结论:Llama 3.1 405B从机械血栓切除术的自由文本报告中提取数据与GPT‑4相同,在局部操作时可能是一种数据安全的替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Llama 3.1 405B Is Comparable to GPT-4 for Extraction of Data from Thrombectomy Reports-A Step Towards Secure Data Extraction.

Purpose: GPT‑4 has been shown to correctly extract procedural details from free-text reports on mechanical thrombectomy. However, GPT may not be suitable for analyzing reports containing personal data. The purpose of this study was to evaluate the ability of the large language models (LLM) Llama3.1 405B, Llama3 70B, Llama3 8B, and Mixtral 8X7B, that can be operated offline, to extract procedural details from free-text reports on mechanical thrombectomies.

Methods: Free-text reports on mechanical thrombectomy from two institutions were included. A detailed prompt was used in German and English languages. The ability of the LLMs to extract procedural data was compared to GPT‑4 using McNemar's test. The manual data entries made by an interventional neuroradiologist served as the reference standard.

Results: 100 reports from institution 1 (mean age 74.7 ± 13.2 years; 53 females) and 30 reports from institution 2 (mean age 72.7 ± 13.5 years; 18 males) were included. Llama 3.1 405B extracted 2619 of 2800 data points correctly (93.5% [95%CI: 92.6%, 94.4%], p = 0.39 vs. GPT-4). Llama3 70B with the English prompt extracted 2537 data points correctly (90.6% [95%CI: 89.5%, 91.7%], p < 0.001 vs. GPT-4), and 2471 (88.2% [95%CI: 87.0%, 89.4%], p < 0.001 vs. GPT-4) with the German prompt. Llama 3 8B extracted 2314 data points correctly (86.1% [95%CI: 84.8%, 87.4%], p < 0.001 vs. GPT-4), and Mixtral 8X7B extracted 2411 (86.1% [95%CI: 84.8%, 87.4%], p < 0.001 vs. GPT-4) correctly.

Conclusion: Llama 3.1 405B was equal to GPT‑4 for data extraction from free-text reports on mechanical thrombectomies and may represent a data secure alternative, when operated locally.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Clinical Neuroradiology
Clinical Neuroradiology CLINICAL NEUROLOGY-RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
CiteScore
5.00
自引率
3.60%
发文量
106
审稿时长
>12 weeks
期刊介绍: Clinical Neuroradiology provides current information, original contributions, and reviews in the field of neuroradiology. An interdisciplinary approach is accomplished by diagnostic and therapeutic contributions related to associated subjects. The international coverage and relevance of the journal is underlined by its being the official journal of the German, Swiss, and Austrian Societies of Neuroradiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信