{"title":"单细胞生长微流体电阻抗监测的等效电路建模与分析","authors":"Yingying Wang, Haoran Wu, Yulu Geng, Zhao Zhang, Jiaming Fu, Jia Ouyang, Zhen Zhu","doi":"10.3390/bios15020113","DOIUrl":null,"url":null,"abstract":"<p><p>Microfluidics has significantly advanced the field of single-cell analysis, particularly in studies related to cell growth, division, and heterogeneity. Electrical impedance spectroscopy (EIS), a label-free and non-invasive biosensing technique, has been integrated into microfluidic devices for high-throughput and long-term monitoring of single budding yeast cells. Accurate interpretation of EIS measurements of cell growth dynamics necessitates the establishment of theoretical equivalent circuit models for the single-cell sensing system. Here, we report on the development of equivalent circuit models of an in situ EIS sensing system to elucidate cell growth. Firstly, finite element modeling and simulation of an EIS measurement of cell growth in the EIS sensing unit were performed, guiding the fittings of electrical components for an established equivalent circuit model (ECM). From the ECM, we extracted an equivalent volume fraction applicable to various cell and sensing unit geometries to describe the geometry-dependent sensing characteristics corresponding to the electrical response in the model. Then, EIS measurements of an immobilized cell in a microfluidic device were conducted via peripheral circuits. A lumped parameter model for the entire EIS measurement system was established, with electrical components determined by fitting to experimental data. The rationality of the proposed theoretical model was validated through the long-term impedance variation induced by cell growth in experiments, demonstrating its feasibility in linking EIS data with the bio-physics underlying the experimental phenomenon.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 2","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11853229/pdf/","citationCount":"0","resultStr":"{\"title\":\"Equivalent Circuit Modeling and Analysis for Microfluidic Electrical Impedance Monitoring of Single-Cell Growth.\",\"authors\":\"Yingying Wang, Haoran Wu, Yulu Geng, Zhao Zhang, Jiaming Fu, Jia Ouyang, Zhen Zhu\",\"doi\":\"10.3390/bios15020113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microfluidics has significantly advanced the field of single-cell analysis, particularly in studies related to cell growth, division, and heterogeneity. Electrical impedance spectroscopy (EIS), a label-free and non-invasive biosensing technique, has been integrated into microfluidic devices for high-throughput and long-term monitoring of single budding yeast cells. Accurate interpretation of EIS measurements of cell growth dynamics necessitates the establishment of theoretical equivalent circuit models for the single-cell sensing system. Here, we report on the development of equivalent circuit models of an in situ EIS sensing system to elucidate cell growth. Firstly, finite element modeling and simulation of an EIS measurement of cell growth in the EIS sensing unit were performed, guiding the fittings of electrical components for an established equivalent circuit model (ECM). From the ECM, we extracted an equivalent volume fraction applicable to various cell and sensing unit geometries to describe the geometry-dependent sensing characteristics corresponding to the electrical response in the model. Then, EIS measurements of an immobilized cell in a microfluidic device were conducted via peripheral circuits. A lumped parameter model for the entire EIS measurement system was established, with electrical components determined by fitting to experimental data. The rationality of the proposed theoretical model was validated through the long-term impedance variation induced by cell growth in experiments, demonstrating its feasibility in linking EIS data with the bio-physics underlying the experimental phenomenon.</p>\",\"PeriodicalId\":48608,\"journal\":{\"name\":\"Biosensors-Basel\",\"volume\":\"15 2\",\"pages\":\"\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11853229/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosensors-Basel\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bios15020113\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios15020113","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Equivalent Circuit Modeling and Analysis for Microfluidic Electrical Impedance Monitoring of Single-Cell Growth.
Microfluidics has significantly advanced the field of single-cell analysis, particularly in studies related to cell growth, division, and heterogeneity. Electrical impedance spectroscopy (EIS), a label-free and non-invasive biosensing technique, has been integrated into microfluidic devices for high-throughput and long-term monitoring of single budding yeast cells. Accurate interpretation of EIS measurements of cell growth dynamics necessitates the establishment of theoretical equivalent circuit models for the single-cell sensing system. Here, we report on the development of equivalent circuit models of an in situ EIS sensing system to elucidate cell growth. Firstly, finite element modeling and simulation of an EIS measurement of cell growth in the EIS sensing unit were performed, guiding the fittings of electrical components for an established equivalent circuit model (ECM). From the ECM, we extracted an equivalent volume fraction applicable to various cell and sensing unit geometries to describe the geometry-dependent sensing characteristics corresponding to the electrical response in the model. Then, EIS measurements of an immobilized cell in a microfluidic device were conducted via peripheral circuits. A lumped parameter model for the entire EIS measurement system was established, with electrical components determined by fitting to experimental data. The rationality of the proposed theoretical model was validated through the long-term impedance variation induced by cell growth in experiments, demonstrating its feasibility in linking EIS data with the bio-physics underlying the experimental phenomenon.
Biosensors-BaselBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍:
Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.