Mohie Mahmoud Ibrahim, Amira Osman, Azza Ibrahim Helal, Ahmed Mohsen Faheem, Mohammad Abd-El-Same'e El-Kattan, Iman Ibrahim, Ahmed Abdel-Monem Elmetwally, Sara Abubakr, Alaa Mohamed Badawy, Emadeldeen Hussin
{"title":"雷公藤红素通过提高水通道蛋白1水平靶向肾氧化应激、炎症和细胞凋亡,减轻对乙酰氨基酚引起的大鼠肾毒性。","authors":"Mohie Mahmoud Ibrahim, Amira Osman, Azza Ibrahim Helal, Ahmed Mohsen Faheem, Mohammad Abd-El-Same'e El-Kattan, Iman Ibrahim, Ahmed Abdel-Monem Elmetwally, Sara Abubakr, Alaa Mohamed Badawy, Emadeldeen Hussin","doi":"10.61186/rbmb.13.2.204","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Acetaminophen also name paracetamol is apopular antipyretic and analgesic drug, in alarge doses produces a cute kidney injury either in human and animals. The aim of this study to assess the effect of celastrol in reducing acetaminophen-induced nephrotoxicity and to elucidate its underlying mechanisms.</p><p><strong>Methods: </strong>Rats were divided into four groups: control, celastrol-treated, acetaminophen-exposed, and a group receiving both acetaminophen and celastrol. After 24 hours, blood samples were taken and kidney tissues were harvested for histological and molecular analyses. The findings shed light on the protective effects of celastrol against acetaminophen-induced nephrotoxicity, offering insights into its therapeutic potential.</p><p><strong>Results: </strong>paracetamol oral intake altered renal histology with significantly P< 0.05 increased serum creatinine, blood urea nitrogen (BUN), and homogenate malonaldhyde (MDA), and immunoexpression of tumor necrosis- alpha (TNF-α), interleukin-6 (IL-6), caspase-3, Bcl-2-associated X- protein (Bax). Furthermore, it decreases homogenate level of superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), and gene expression of nuclear factor erythroid 2-related factor 2 (Nrf2), and haem oxygenase-1 (HO-1). Meanwhile, intraperitoneal injection of celastrol with acetaminophen reaffirms the previous results.</p><p><strong>Conclusions: </strong>We provided a novel treatment against acetaminophen induced-nephrotoxicity with targeting renal oxidative stress, inflammation, apoptosis with elevation of Aquaporin 1 (AQP1) level.</p>","PeriodicalId":45319,"journal":{"name":"Reports of Biochemistry and Molecular Biology","volume":"13 2","pages":"204-217"},"PeriodicalIF":1.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11847583/pdf/","citationCount":"0","resultStr":"{\"title\":\"Celastrol Mitigates Acetaminophen-Induced Nephrotoxicity in Rats via Targeting Renal Oxidative Stress, Inflammation, Apoptosis with Enhancement in Aquaporin 1 Level.\",\"authors\":\"Mohie Mahmoud Ibrahim, Amira Osman, Azza Ibrahim Helal, Ahmed Mohsen Faheem, Mohammad Abd-El-Same'e El-Kattan, Iman Ibrahim, Ahmed Abdel-Monem Elmetwally, Sara Abubakr, Alaa Mohamed Badawy, Emadeldeen Hussin\",\"doi\":\"10.61186/rbmb.13.2.204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Acetaminophen also name paracetamol is apopular antipyretic and analgesic drug, in alarge doses produces a cute kidney injury either in human and animals. The aim of this study to assess the effect of celastrol in reducing acetaminophen-induced nephrotoxicity and to elucidate its underlying mechanisms.</p><p><strong>Methods: </strong>Rats were divided into four groups: control, celastrol-treated, acetaminophen-exposed, and a group receiving both acetaminophen and celastrol. After 24 hours, blood samples were taken and kidney tissues were harvested for histological and molecular analyses. The findings shed light on the protective effects of celastrol against acetaminophen-induced nephrotoxicity, offering insights into its therapeutic potential.</p><p><strong>Results: </strong>paracetamol oral intake altered renal histology with significantly P< 0.05 increased serum creatinine, blood urea nitrogen (BUN), and homogenate malonaldhyde (MDA), and immunoexpression of tumor necrosis- alpha (TNF-α), interleukin-6 (IL-6), caspase-3, Bcl-2-associated X- protein (Bax). Furthermore, it decreases homogenate level of superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), and gene expression of nuclear factor erythroid 2-related factor 2 (Nrf2), and haem oxygenase-1 (HO-1). Meanwhile, intraperitoneal injection of celastrol with acetaminophen reaffirms the previous results.</p><p><strong>Conclusions: </strong>We provided a novel treatment against acetaminophen induced-nephrotoxicity with targeting renal oxidative stress, inflammation, apoptosis with elevation of Aquaporin 1 (AQP1) level.</p>\",\"PeriodicalId\":45319,\"journal\":{\"name\":\"Reports of Biochemistry and Molecular Biology\",\"volume\":\"13 2\",\"pages\":\"204-217\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11847583/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reports of Biochemistry and Molecular Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.61186/rbmb.13.2.204\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports of Biochemistry and Molecular Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.61186/rbmb.13.2.204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Celastrol Mitigates Acetaminophen-Induced Nephrotoxicity in Rats via Targeting Renal Oxidative Stress, Inflammation, Apoptosis with Enhancement in Aquaporin 1 Level.
Background: Acetaminophen also name paracetamol is apopular antipyretic and analgesic drug, in alarge doses produces a cute kidney injury either in human and animals. The aim of this study to assess the effect of celastrol in reducing acetaminophen-induced nephrotoxicity and to elucidate its underlying mechanisms.
Methods: Rats were divided into four groups: control, celastrol-treated, acetaminophen-exposed, and a group receiving both acetaminophen and celastrol. After 24 hours, blood samples were taken and kidney tissues were harvested for histological and molecular analyses. The findings shed light on the protective effects of celastrol against acetaminophen-induced nephrotoxicity, offering insights into its therapeutic potential.
Results: paracetamol oral intake altered renal histology with significantly P< 0.05 increased serum creatinine, blood urea nitrogen (BUN), and homogenate malonaldhyde (MDA), and immunoexpression of tumor necrosis- alpha (TNF-α), interleukin-6 (IL-6), caspase-3, Bcl-2-associated X- protein (Bax). Furthermore, it decreases homogenate level of superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), and gene expression of nuclear factor erythroid 2-related factor 2 (Nrf2), and haem oxygenase-1 (HO-1). Meanwhile, intraperitoneal injection of celastrol with acetaminophen reaffirms the previous results.
Conclusions: We provided a novel treatment against acetaminophen induced-nephrotoxicity with targeting renal oxidative stress, inflammation, apoptosis with elevation of Aquaporin 1 (AQP1) level.
期刊介绍:
The Reports of Biochemistry & Molecular Biology (RBMB) is the official journal of the Varastegan Institute for Medical Sciences and is dedicated to furthering international exchange of medical and biomedical science experience and opinion and a platform for worldwide dissemination. The RBMB is a medical journal that gives special emphasis to biochemical research and molecular biology studies. The Journal invites original and review articles, short communications, reports on experiments and clinical cases, and case reports containing new insights into any aspect of biochemistry and molecular biology that are not published or being considered for publication elsewhere. Publications are accepted in the form of reports of original research, brief communications, case reports, structured reviews, editorials, commentaries, views and perspectives, letters to authors, book reviews, resources, news, and event agenda.