Hadi Zare-Zardini, Ameneh Alizadeh, Elham Saberian, Andrej Jenča, Andrej Jenca, Adriána Petrášová, Janka Jenčová, Seyede Tahmine Hasani, Mohammad Amin Heidari, Nafiseh Sahraei
{"title":"薄荷提取物负载的白蛋白纳米颗粒对耐甲氧西林金黄色葡萄球菌的抗菌效果和生物相容性增强。","authors":"Hadi Zare-Zardini, Ameneh Alizadeh, Elham Saberian, Andrej Jenča, Andrej Jenca, Adriána Petrášová, Janka Jenčová, Seyede Tahmine Hasani, Mohammad Amin Heidari, Nafiseh Sahraei","doi":"10.1038/s41598-025-90825-3","DOIUrl":null,"url":null,"abstract":"<p><p>In an effort to combat methicillin-resistant Staphylococcus aureus (MRSA), this study investigates the potential of mentha-loaded albumin nanoparticles (MLAN) as a novel antimicrobial agent. MLAN was synthesized by a desolvation method in which the mentha extract was encapsulated in albumin nanoparticles to increase stability and reduce toxicity. Characterization of the nanoparticles by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), and X-ray Diffraction (XRD) confirmed their spherical morphology, a size range of 100-200 nm and uniform distribution. The encapsulation efficiency (EE%) and loading capacity (LC%) of MLAN were determined to be 80% and 72.73%, respectively, indicating a high effectiveness of the encapsulation process. Evaluation of cytotoxicity using the MTT assay revealed that MLAN exhibited significantly higher biocompatibility compared to aqueous Mentha extract and maintained cell viability at 85.1 ± 3.5% at the highest concentration tested (250 µg/mL). Antimicrobial evaluations against MRSA showed that MLAN had larger zones of inhibition and lower minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values (0.39 mg/mL and 0.78 mg/mL, respectively) compared to the aqueous extract (MIC: 0.78 mg/mL, MBC: 1.56 mg/mL). In addition, real-time PCR showed that MLAN significantly downregulated the expression of key virulence genes (icaA, icaD and ebps) in MRSA, indicating a potential reduction in bacterial virulence. These results suggest that MLAN could be a promising alternative to conventional antibiotics with improved antimicrobial efficacy and reduced cytotoxicity. The study underlines the potential of combining plant extracts with nanotechnology for the development of new therapeutic approaches against antibiotic-resistant pathogens such as MRSA. Further in vivo studies are warranted to validate the clinical applicability of MLAN.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"6548"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11850703/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enhanced antimicrobial efficacy and biocompatibility of albumin nanoparticles loaded with Mentha extract against methicillin resistant Staphylococcus aureus.\",\"authors\":\"Hadi Zare-Zardini, Ameneh Alizadeh, Elham Saberian, Andrej Jenča, Andrej Jenca, Adriána Petrášová, Janka Jenčová, Seyede Tahmine Hasani, Mohammad Amin Heidari, Nafiseh Sahraei\",\"doi\":\"10.1038/s41598-025-90825-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In an effort to combat methicillin-resistant Staphylococcus aureus (MRSA), this study investigates the potential of mentha-loaded albumin nanoparticles (MLAN) as a novel antimicrobial agent. MLAN was synthesized by a desolvation method in which the mentha extract was encapsulated in albumin nanoparticles to increase stability and reduce toxicity. Characterization of the nanoparticles by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), and X-ray Diffraction (XRD) confirmed their spherical morphology, a size range of 100-200 nm and uniform distribution. The encapsulation efficiency (EE%) and loading capacity (LC%) of MLAN were determined to be 80% and 72.73%, respectively, indicating a high effectiveness of the encapsulation process. Evaluation of cytotoxicity using the MTT assay revealed that MLAN exhibited significantly higher biocompatibility compared to aqueous Mentha extract and maintained cell viability at 85.1 ± 3.5% at the highest concentration tested (250 µg/mL). Antimicrobial evaluations against MRSA showed that MLAN had larger zones of inhibition and lower minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values (0.39 mg/mL and 0.78 mg/mL, respectively) compared to the aqueous extract (MIC: 0.78 mg/mL, MBC: 1.56 mg/mL). In addition, real-time PCR showed that MLAN significantly downregulated the expression of key virulence genes (icaA, icaD and ebps) in MRSA, indicating a potential reduction in bacterial virulence. These results suggest that MLAN could be a promising alternative to conventional antibiotics with improved antimicrobial efficacy and reduced cytotoxicity. The study underlines the potential of combining plant extracts with nanotechnology for the development of new therapeutic approaches against antibiotic-resistant pathogens such as MRSA. Further in vivo studies are warranted to validate the clinical applicability of MLAN.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"6548\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11850703/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-90825-3\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-90825-3","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Enhanced antimicrobial efficacy and biocompatibility of albumin nanoparticles loaded with Mentha extract against methicillin resistant Staphylococcus aureus.
In an effort to combat methicillin-resistant Staphylococcus aureus (MRSA), this study investigates the potential of mentha-loaded albumin nanoparticles (MLAN) as a novel antimicrobial agent. MLAN was synthesized by a desolvation method in which the mentha extract was encapsulated in albumin nanoparticles to increase stability and reduce toxicity. Characterization of the nanoparticles by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), and X-ray Diffraction (XRD) confirmed their spherical morphology, a size range of 100-200 nm and uniform distribution. The encapsulation efficiency (EE%) and loading capacity (LC%) of MLAN were determined to be 80% and 72.73%, respectively, indicating a high effectiveness of the encapsulation process. Evaluation of cytotoxicity using the MTT assay revealed that MLAN exhibited significantly higher biocompatibility compared to aqueous Mentha extract and maintained cell viability at 85.1 ± 3.5% at the highest concentration tested (250 µg/mL). Antimicrobial evaluations against MRSA showed that MLAN had larger zones of inhibition and lower minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values (0.39 mg/mL and 0.78 mg/mL, respectively) compared to the aqueous extract (MIC: 0.78 mg/mL, MBC: 1.56 mg/mL). In addition, real-time PCR showed that MLAN significantly downregulated the expression of key virulence genes (icaA, icaD and ebps) in MRSA, indicating a potential reduction in bacterial virulence. These results suggest that MLAN could be a promising alternative to conventional antibiotics with improved antimicrobial efficacy and reduced cytotoxicity. The study underlines the potential of combining plant extracts with nanotechnology for the development of new therapeutic approaches against antibiotic-resistant pathogens such as MRSA. Further in vivo studies are warranted to validate the clinical applicability of MLAN.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.