采用基于PEDOT:PSS/CNTs和MXene/Bi2Se3的高性能柔性热电偶传感器进行双模式温度监测。

IF 7.3 1区 工程技术 Q1 INSTRUMENTS & INSTRUMENTATION
Baichuan Sun, Gaobin Xu, Zhaohui Yang, Cunhe Guan, Xu Ji, Shirong Chen, Xing Chen, Yuanming Ma, Jianguo Feng
{"title":"采用基于PEDOT:PSS/CNTs和MXene/Bi2Se3的高性能柔性热电偶传感器进行双模式温度监测。","authors":"Baichuan Sun, Gaobin Xu, Zhaohui Yang, Cunhe Guan, Xu Ji, Shirong Chen, Xing Chen, Yuanming Ma, Jianguo Feng","doi":"10.1038/s41378-025-00867-w","DOIUrl":null,"url":null,"abstract":"<p><p>Due to the limited thermoelectric (TE) performance of polymer materials and the inherent rigidity of inorganic materials, developing low-cost, highly flexible, and high-performance materials for flexible thermocouple sensors (FTCSs) remains challenging. Additionally, dual-mode (contact/non-contact) temperature monitoring in FTCSs is underexplored. This study addresses these issues by using p-type (PEDOT:PSS/CNTs, 2:1) and n-type (MXene/Bi<sub>2</sub>Se<sub>3</sub>, 2:1) TE materials applied via screen printing and compression onto a PPSN substrate (paper/PDMS/Si<sub>3</sub>N₄). The resulting FTCSs exhibit excellent TE properties: electrical conductivities of 61,197.88 S/m (n-type) and 55,697.77 S/m (p-type), Seebeck coefficients of 39.88 μV/K and -29.45 μV/K, and power factors (PFs) of 97.66 μW/mK² and 55.64 μW/mK², respectively. In contact mode, the sensor shows high-temperature sensitivity (S<sub>T</sub> = 379.5 μV/°C), a broad detection range (20-200 °C), high resolution (~0.3 °C), and fast response (~12.6 ms). In non-contact mode, it maintains good sensitivity (S<sub>Tmax</sub> = 52.67 μV/°C), a broad detection range, high resolution (~0.8 °C), and even faster response (~9.8 ms). The sensor also demonstrates strong mechanical durability, maintaining stable performance after 1000 bending cycles. When applied to dual-mode temperature monitoring in wearable devices and lithium batteries, the FTCS shows high accuracy and reliability compared to commercial K-type thermocouples, indicating significant potential for advanced medical monitoring systems and smart home technologies.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"11 1","pages":"31"},"PeriodicalIF":7.3000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11850902/pdf/","citationCount":"0","resultStr":"{\"title\":\"Dual-mode temperature monitoring using high-performance flexible thermocouple sensors based on PEDOT:PSS/CNTs and MXene/Bi<sub>2</sub>Se<sub>3</sub>.\",\"authors\":\"Baichuan Sun, Gaobin Xu, Zhaohui Yang, Cunhe Guan, Xu Ji, Shirong Chen, Xing Chen, Yuanming Ma, Jianguo Feng\",\"doi\":\"10.1038/s41378-025-00867-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Due to the limited thermoelectric (TE) performance of polymer materials and the inherent rigidity of inorganic materials, developing low-cost, highly flexible, and high-performance materials for flexible thermocouple sensors (FTCSs) remains challenging. Additionally, dual-mode (contact/non-contact) temperature monitoring in FTCSs is underexplored. This study addresses these issues by using p-type (PEDOT:PSS/CNTs, 2:1) and n-type (MXene/Bi<sub>2</sub>Se<sub>3</sub>, 2:1) TE materials applied via screen printing and compression onto a PPSN substrate (paper/PDMS/Si<sub>3</sub>N₄). The resulting FTCSs exhibit excellent TE properties: electrical conductivities of 61,197.88 S/m (n-type) and 55,697.77 S/m (p-type), Seebeck coefficients of 39.88 μV/K and -29.45 μV/K, and power factors (PFs) of 97.66 μW/mK² and 55.64 μW/mK², respectively. In contact mode, the sensor shows high-temperature sensitivity (S<sub>T</sub> = 379.5 μV/°C), a broad detection range (20-200 °C), high resolution (~0.3 °C), and fast response (~12.6 ms). In non-contact mode, it maintains good sensitivity (S<sub>Tmax</sub> = 52.67 μV/°C), a broad detection range, high resolution (~0.8 °C), and even faster response (~9.8 ms). The sensor also demonstrates strong mechanical durability, maintaining stable performance after 1000 bending cycles. When applied to dual-mode temperature monitoring in wearable devices and lithium batteries, the FTCS shows high accuracy and reliability compared to commercial K-type thermocouples, indicating significant potential for advanced medical monitoring systems and smart home technologies.</p>\",\"PeriodicalId\":18560,\"journal\":{\"name\":\"Microsystems & Nanoengineering\",\"volume\":\"11 1\",\"pages\":\"31\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11850902/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microsystems & Nanoengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1038/s41378-025-00867-w\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystems & Nanoengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41378-025-00867-w","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

由于聚合物材料的热电(TE)性能有限,以及无机材料固有的刚性,开发用于柔性热电偶传感器(ftcs)的低成本、高柔性和高性能材料仍然具有挑战性。此外,ftcs中的双模式(接触式/非接触式)温度监测尚未得到充分探索。本研究通过将p型(PEDOT:PSS/CNTs, 2:1)和n型(MXene/Bi2Se3, 2:1) TE材料通过丝网印刷和压缩应用到PPSN基板(纸/PDMS/Si3N₄)上来解决这些问题。所制得的ftcs具有优异的TE性能:电导率分别为61,197.88 S/m (n型)和55,697.77 S/m (p型),Seebeck系数分别为39.88 μV/K和-29.45 μV/K,功率因数(PFs)分别为97.66 μW/mK²和55.64 μW/mK²。在接触模式下,该传感器具有高温灵敏度(ST = 379.5 μV/°C)、宽检测范围(20-200°C)、高分辨率(~0.3°C)和快速响应(~12.6 ms)等特点。在非接触模式下,具有良好的灵敏度(STmax = 52.67 μV/°C)、宽检测范围、高分辨率(~0.8°C)和更快的响应速度(~9.8 ms)。该传感器还具有很强的机械耐久性,在1000次弯曲循环后保持稳定的性能。当应用于可穿戴设备和锂电池的双模温度监测时,与商用k型热电偶相比,FTCS显示出更高的准确性和可靠性,表明先进医疗监测系统和智能家居技术的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dual-mode temperature monitoring using high-performance flexible thermocouple sensors based on PEDOT:PSS/CNTs and MXene/Bi2Se3.

Due to the limited thermoelectric (TE) performance of polymer materials and the inherent rigidity of inorganic materials, developing low-cost, highly flexible, and high-performance materials for flexible thermocouple sensors (FTCSs) remains challenging. Additionally, dual-mode (contact/non-contact) temperature monitoring in FTCSs is underexplored. This study addresses these issues by using p-type (PEDOT:PSS/CNTs, 2:1) and n-type (MXene/Bi2Se3, 2:1) TE materials applied via screen printing and compression onto a PPSN substrate (paper/PDMS/Si3N₄). The resulting FTCSs exhibit excellent TE properties: electrical conductivities of 61,197.88 S/m (n-type) and 55,697.77 S/m (p-type), Seebeck coefficients of 39.88 μV/K and -29.45 μV/K, and power factors (PFs) of 97.66 μW/mK² and 55.64 μW/mK², respectively. In contact mode, the sensor shows high-temperature sensitivity (ST = 379.5 μV/°C), a broad detection range (20-200 °C), high resolution (~0.3 °C), and fast response (~12.6 ms). In non-contact mode, it maintains good sensitivity (STmax = 52.67 μV/°C), a broad detection range, high resolution (~0.8 °C), and even faster response (~9.8 ms). The sensor also demonstrates strong mechanical durability, maintaining stable performance after 1000 bending cycles. When applied to dual-mode temperature monitoring in wearable devices and lithium batteries, the FTCS shows high accuracy and reliability compared to commercial K-type thermocouples, indicating significant potential for advanced medical monitoring systems and smart home technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microsystems & Nanoengineering
Microsystems & Nanoengineering Materials Science-Materials Science (miscellaneous)
CiteScore
12.00
自引率
3.80%
发文量
123
审稿时长
20 weeks
期刊介绍: Microsystems & Nanoengineering is a comprehensive online journal that focuses on the field of Micro and Nano Electro Mechanical Systems (MEMS and NEMS). It provides a platform for researchers to share their original research findings and review articles in this area. The journal covers a wide range of topics, from fundamental research to practical applications. Published by Springer Nature, in collaboration with the Aerospace Information Research Institute, Chinese Academy of Sciences, and with the support of the State Key Laboratory of Transducer Technology, it is an esteemed publication in the field. As an open access journal, it offers free access to its content, allowing readers from around the world to benefit from the latest developments in MEMS and NEMS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信