{"title":"采用基于PEDOT:PSS/CNTs和MXene/Bi2Se3的高性能柔性热电偶传感器进行双模式温度监测。","authors":"Baichuan Sun, Gaobin Xu, Zhaohui Yang, Cunhe Guan, Xu Ji, Shirong Chen, Xing Chen, Yuanming Ma, Jianguo Feng","doi":"10.1038/s41378-025-00867-w","DOIUrl":null,"url":null,"abstract":"<p><p>Due to the limited thermoelectric (TE) performance of polymer materials and the inherent rigidity of inorganic materials, developing low-cost, highly flexible, and high-performance materials for flexible thermocouple sensors (FTCSs) remains challenging. Additionally, dual-mode (contact/non-contact) temperature monitoring in FTCSs is underexplored. This study addresses these issues by using p-type (PEDOT:PSS/CNTs, 2:1) and n-type (MXene/Bi<sub>2</sub>Se<sub>3</sub>, 2:1) TE materials applied via screen printing and compression onto a PPSN substrate (paper/PDMS/Si<sub>3</sub>N₄). The resulting FTCSs exhibit excellent TE properties: electrical conductivities of 61,197.88 S/m (n-type) and 55,697.77 S/m (p-type), Seebeck coefficients of 39.88 μV/K and -29.45 μV/K, and power factors (PFs) of 97.66 μW/mK² and 55.64 μW/mK², respectively. In contact mode, the sensor shows high-temperature sensitivity (S<sub>T</sub> = 379.5 μV/°C), a broad detection range (20-200 °C), high resolution (~0.3 °C), and fast response (~12.6 ms). In non-contact mode, it maintains good sensitivity (S<sub>Tmax</sub> = 52.67 μV/°C), a broad detection range, high resolution (~0.8 °C), and even faster response (~9.8 ms). The sensor also demonstrates strong mechanical durability, maintaining stable performance after 1000 bending cycles. When applied to dual-mode temperature monitoring in wearable devices and lithium batteries, the FTCS shows high accuracy and reliability compared to commercial K-type thermocouples, indicating significant potential for advanced medical monitoring systems and smart home technologies.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"11 1","pages":"31"},"PeriodicalIF":7.3000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11850902/pdf/","citationCount":"0","resultStr":"{\"title\":\"Dual-mode temperature monitoring using high-performance flexible thermocouple sensors based on PEDOT:PSS/CNTs and MXene/Bi<sub>2</sub>Se<sub>3</sub>.\",\"authors\":\"Baichuan Sun, Gaobin Xu, Zhaohui Yang, Cunhe Guan, Xu Ji, Shirong Chen, Xing Chen, Yuanming Ma, Jianguo Feng\",\"doi\":\"10.1038/s41378-025-00867-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Due to the limited thermoelectric (TE) performance of polymer materials and the inherent rigidity of inorganic materials, developing low-cost, highly flexible, and high-performance materials for flexible thermocouple sensors (FTCSs) remains challenging. Additionally, dual-mode (contact/non-contact) temperature monitoring in FTCSs is underexplored. This study addresses these issues by using p-type (PEDOT:PSS/CNTs, 2:1) and n-type (MXene/Bi<sub>2</sub>Se<sub>3</sub>, 2:1) TE materials applied via screen printing and compression onto a PPSN substrate (paper/PDMS/Si<sub>3</sub>N₄). The resulting FTCSs exhibit excellent TE properties: electrical conductivities of 61,197.88 S/m (n-type) and 55,697.77 S/m (p-type), Seebeck coefficients of 39.88 μV/K and -29.45 μV/K, and power factors (PFs) of 97.66 μW/mK² and 55.64 μW/mK², respectively. In contact mode, the sensor shows high-temperature sensitivity (S<sub>T</sub> = 379.5 μV/°C), a broad detection range (20-200 °C), high resolution (~0.3 °C), and fast response (~12.6 ms). In non-contact mode, it maintains good sensitivity (S<sub>Tmax</sub> = 52.67 μV/°C), a broad detection range, high resolution (~0.8 °C), and even faster response (~9.8 ms). The sensor also demonstrates strong mechanical durability, maintaining stable performance after 1000 bending cycles. When applied to dual-mode temperature monitoring in wearable devices and lithium batteries, the FTCS shows high accuracy and reliability compared to commercial K-type thermocouples, indicating significant potential for advanced medical monitoring systems and smart home technologies.</p>\",\"PeriodicalId\":18560,\"journal\":{\"name\":\"Microsystems & Nanoengineering\",\"volume\":\"11 1\",\"pages\":\"31\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11850902/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microsystems & Nanoengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1038/s41378-025-00867-w\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystems & Nanoengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41378-025-00867-w","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Dual-mode temperature monitoring using high-performance flexible thermocouple sensors based on PEDOT:PSS/CNTs and MXene/Bi2Se3.
Due to the limited thermoelectric (TE) performance of polymer materials and the inherent rigidity of inorganic materials, developing low-cost, highly flexible, and high-performance materials for flexible thermocouple sensors (FTCSs) remains challenging. Additionally, dual-mode (contact/non-contact) temperature monitoring in FTCSs is underexplored. This study addresses these issues by using p-type (PEDOT:PSS/CNTs, 2:1) and n-type (MXene/Bi2Se3, 2:1) TE materials applied via screen printing and compression onto a PPSN substrate (paper/PDMS/Si3N₄). The resulting FTCSs exhibit excellent TE properties: electrical conductivities of 61,197.88 S/m (n-type) and 55,697.77 S/m (p-type), Seebeck coefficients of 39.88 μV/K and -29.45 μV/K, and power factors (PFs) of 97.66 μW/mK² and 55.64 μW/mK², respectively. In contact mode, the sensor shows high-temperature sensitivity (ST = 379.5 μV/°C), a broad detection range (20-200 °C), high resolution (~0.3 °C), and fast response (~12.6 ms). In non-contact mode, it maintains good sensitivity (STmax = 52.67 μV/°C), a broad detection range, high resolution (~0.8 °C), and even faster response (~9.8 ms). The sensor also demonstrates strong mechanical durability, maintaining stable performance after 1000 bending cycles. When applied to dual-mode temperature monitoring in wearable devices and lithium batteries, the FTCS shows high accuracy and reliability compared to commercial K-type thermocouples, indicating significant potential for advanced medical monitoring systems and smart home technologies.
期刊介绍:
Microsystems & Nanoengineering is a comprehensive online journal that focuses on the field of Micro and Nano Electro Mechanical Systems (MEMS and NEMS). It provides a platform for researchers to share their original research findings and review articles in this area. The journal covers a wide range of topics, from fundamental research to practical applications. Published by Springer Nature, in collaboration with the Aerospace Information Research Institute, Chinese Academy of Sciences, and with the support of the State Key Laboratory of Transducer Technology, it is an esteemed publication in the field. As an open access journal, it offers free access to its content, allowing readers from around the world to benefit from the latest developments in MEMS and NEMS.