基于先进模糊II控制器的模拟移动床纯度控制。

IF 2.6 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
PLoS ONE Pub Date : 2025-02-24 eCollection Date: 2025-01-01 DOI:10.1371/journal.pone.0314545
Chao-Fan Xie, Ting Lin, Hong Zhang
{"title":"基于先进模糊II控制器的模拟移动床纯度控制。","authors":"Chao-Fan Xie, Ting Lin, Hong Zhang","doi":"10.1371/journal.pone.0314545","DOIUrl":null,"url":null,"abstract":"<p><p>Simulated Moving Bed (SMB) is the optimal technology for chromatographic separation, but its process is complex and sensitive to numerous parameters that affect separation performance, making it difficult to control. In recent years, fuzzy controllers have been widely applied in industry due to their simplicity, robustness, and ease of implementation. However, traditional fuzzy controllers used in industry do not consider the error acceleration term. In steady-state conditions, error acceleration is typically slightly less than the target value. Introducing the acceleration term, albeit non-fuzzy, in a proactive fuzzy I-type controller often leads to an increase in steady-state values. The study shows that, compared to the advanced fuzzy I-type controller, the extraction accuracy for material B improved by an average of 0.7%, while the accuracy for material A increased by 0.1%. Compared to traditional fuzzy controllers, the extraction accuracy for material B improved by an average of 0.35%, while the accuracy for material A remained relatively stable. In terms of stability analysis concerning variations in moving bed parameters, the advanced fuzzy II-type controller exhibited greater stability than the I-type, with an average precision stability improvement of 0.6%. Traditional fuzzy controllers demonstrated pathological characteristics during fluctuations in the switching time parameter, whereas the advanced fuzzy II type controller-maintained stability.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"20 2","pages":"e0314545"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11849874/pdf/","citationCount":"0","resultStr":"{\"title\":\"Purity control of simulated moving bed based on advanced fuzzy II controller.\",\"authors\":\"Chao-Fan Xie, Ting Lin, Hong Zhang\",\"doi\":\"10.1371/journal.pone.0314545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Simulated Moving Bed (SMB) is the optimal technology for chromatographic separation, but its process is complex and sensitive to numerous parameters that affect separation performance, making it difficult to control. In recent years, fuzzy controllers have been widely applied in industry due to their simplicity, robustness, and ease of implementation. However, traditional fuzzy controllers used in industry do not consider the error acceleration term. In steady-state conditions, error acceleration is typically slightly less than the target value. Introducing the acceleration term, albeit non-fuzzy, in a proactive fuzzy I-type controller often leads to an increase in steady-state values. The study shows that, compared to the advanced fuzzy I-type controller, the extraction accuracy for material B improved by an average of 0.7%, while the accuracy for material A increased by 0.1%. Compared to traditional fuzzy controllers, the extraction accuracy for material B improved by an average of 0.35%, while the accuracy for material A remained relatively stable. In terms of stability analysis concerning variations in moving bed parameters, the advanced fuzzy II-type controller exhibited greater stability than the I-type, with an average precision stability improvement of 0.6%. Traditional fuzzy controllers demonstrated pathological characteristics during fluctuations in the switching time parameter, whereas the advanced fuzzy II type controller-maintained stability.</p>\",\"PeriodicalId\":20189,\"journal\":{\"name\":\"PLoS ONE\",\"volume\":\"20 2\",\"pages\":\"e0314545\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11849874/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS ONE\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pone.0314545\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0314545","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

模拟移动床(SMB)是色谱分离的最佳技术,但其过程复杂且对众多影响分离性能的参数敏感,难以控制。近年来,模糊控制器以其简单、鲁棒性好、易于实现等优点在工业中得到了广泛的应用。然而,工业上使用的传统模糊控制器不考虑误差加速度项。在稳态条件下,误差加速度通常略小于目标值。在主动模糊i型控制器中引入加速度项,尽管是非模糊的,但通常会导致稳态值的增加。研究表明,与先进的模糊i型控制器相比,材料B的提取精度平均提高了0.7%,而材料A的提取精度平均提高了0.1%。与传统模糊控制器相比,材料B的提取精度平均提高了0.35%,而材料A的提取精度保持相对稳定。在对动床参数变化的稳定性分析中,先进模糊ii型控制器的稳定性优于i型控制器,平均精度稳定性提高0.6%。传统的模糊控制器在切换时间参数波动时表现出病态特征,而先进的模糊II型控制器保持稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Purity control of simulated moving bed based on advanced fuzzy II controller.

Simulated Moving Bed (SMB) is the optimal technology for chromatographic separation, but its process is complex and sensitive to numerous parameters that affect separation performance, making it difficult to control. In recent years, fuzzy controllers have been widely applied in industry due to their simplicity, robustness, and ease of implementation. However, traditional fuzzy controllers used in industry do not consider the error acceleration term. In steady-state conditions, error acceleration is typically slightly less than the target value. Introducing the acceleration term, albeit non-fuzzy, in a proactive fuzzy I-type controller often leads to an increase in steady-state values. The study shows that, compared to the advanced fuzzy I-type controller, the extraction accuracy for material B improved by an average of 0.7%, while the accuracy for material A increased by 0.1%. Compared to traditional fuzzy controllers, the extraction accuracy for material B improved by an average of 0.35%, while the accuracy for material A remained relatively stable. In terms of stability analysis concerning variations in moving bed parameters, the advanced fuzzy II-type controller exhibited greater stability than the I-type, with an average precision stability improvement of 0.6%. Traditional fuzzy controllers demonstrated pathological characteristics during fluctuations in the switching time parameter, whereas the advanced fuzzy II type controller-maintained stability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PLoS ONE
PLoS ONE 生物-生物学
CiteScore
6.20
自引率
5.40%
发文量
14242
审稿时长
3.7 months
期刊介绍: PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides: * Open-access—freely accessible online, authors retain copyright * Fast publication times * Peer review by expert, practicing researchers * Post-publication tools to indicate quality and impact * Community-based dialogue on articles * Worldwide media coverage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信