Am-MSN/PVDF混合基质膜的制备及对活性黑5的强化去除。

IF 3.3 4区 工程技术 Q2 CHEMISTRY, PHYSICAL
Jihao Zuo, Mengkang Lu, Jinting Cai, Ruopeng Lan, Xinjuan Zeng, Cailong Zhou
{"title":"Am-MSN/PVDF混合基质膜的制备及对活性黑5的强化去除。","authors":"Jihao Zuo, Mengkang Lu, Jinting Cai, Ruopeng Lan, Xinjuan Zeng, Cailong Zhou","doi":"10.3390/membranes15020042","DOIUrl":null,"url":null,"abstract":"<p><p>The discharge of large volumes of textile dyeing wastewater, characterized by poor biodegradability and high toxicity, poses severe threats to the environment. In this study, polyvinylidene difluoride (PVDF) membranes were prepared using the nonsolvent-induced phase separation (NIPS) method, with porous amino-functionalized mesoporous silica nanoparticles (Am-MSNs) mixed into the casting solution to fabricate the Am-MSN/PVDF mixed matrix membranes. By varying the amount of Am-MSNs added, the microstructure and overall performance of the membranes were comprehensively analyzed. The results demonstrated that the addition of Am-MSNs significantly enhanced the hydrophilicity of the membranes. The high specific surface area and amino groups of Am-MSNs facilitated interactions with dye molecules, such as Reactive Black 5 (RB5), through hydrogen bonding, electrostatic attraction, and physical adsorption, resulting in a marked improvement in RB5 rejection rates. Static adsorption tests further validated the superior adsorption capacity of the Am-MSN/PVDF mixed matrix membranes for RB5. Additionally, the nanoscale mesoporous structure of Am-MSNs enhanced the mechanical strength of the membranes. The synergistic effects of the mesoporous structure and amino groups significantly increased the efficiency and stability of the Am-MSN/PVDF mixed matrix membranes in dye removal applications, providing an effective and sustainable solution for the treatment of dye-contaminated wastewater.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"15 2","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11857114/pdf/","citationCount":"0","resultStr":"{\"title\":\"Preparation of Am-MSN/PVDF Mixed Matrix Membranes for Enhanced Removal of Reactive Black 5.\",\"authors\":\"Jihao Zuo, Mengkang Lu, Jinting Cai, Ruopeng Lan, Xinjuan Zeng, Cailong Zhou\",\"doi\":\"10.3390/membranes15020042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The discharge of large volumes of textile dyeing wastewater, characterized by poor biodegradability and high toxicity, poses severe threats to the environment. In this study, polyvinylidene difluoride (PVDF) membranes were prepared using the nonsolvent-induced phase separation (NIPS) method, with porous amino-functionalized mesoporous silica nanoparticles (Am-MSNs) mixed into the casting solution to fabricate the Am-MSN/PVDF mixed matrix membranes. By varying the amount of Am-MSNs added, the microstructure and overall performance of the membranes were comprehensively analyzed. The results demonstrated that the addition of Am-MSNs significantly enhanced the hydrophilicity of the membranes. The high specific surface area and amino groups of Am-MSNs facilitated interactions with dye molecules, such as Reactive Black 5 (RB5), through hydrogen bonding, electrostatic attraction, and physical adsorption, resulting in a marked improvement in RB5 rejection rates. Static adsorption tests further validated the superior adsorption capacity of the Am-MSN/PVDF mixed matrix membranes for RB5. Additionally, the nanoscale mesoporous structure of Am-MSNs enhanced the mechanical strength of the membranes. The synergistic effects of the mesoporous structure and amino groups significantly increased the efficiency and stability of the Am-MSN/PVDF mixed matrix membranes in dye removal applications, providing an effective and sustainable solution for the treatment of dye-contaminated wastewater.</p>\",\"PeriodicalId\":18410,\"journal\":{\"name\":\"Membranes\",\"volume\":\"15 2\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11857114/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Membranes\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/membranes15020042\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/membranes15020042","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

纺织印染废水的大量排放,具有可生物降解性差、毒性大的特点,对环境造成了严重威胁。本研究采用非溶剂诱导相分离(NIPS)法制备聚偏二氟乙烯(PVDF)膜,将多孔氨基功能化介孔二氧化硅纳米颗粒(Am-MSNs)掺入铸造液中制备Am-MSN/PVDF混合基质膜。通过改变am - msn的添加量,对膜的微观结构和整体性能进行了综合分析。结果表明,am - msn的加入显著提高了膜的亲水性。Am-MSNs的高比表面积和氨基促进了与活性黑5 (RB5)等染料分子通过氢键、静电吸引和物理吸附的相互作用,从而显著提高了RB5的拒斥率。静态吸附实验进一步验证了Am-MSN/PVDF混合基质膜对RB5的优越吸附能力。此外,am - msn的纳米介孔结构增强了膜的机械强度。介孔结构和氨基的协同作用显著提高了Am-MSN/PVDF混合基质膜在染料去除应用中的效率和稳定性,为染料污染废水的处理提供了有效和可持续的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Preparation of Am-MSN/PVDF Mixed Matrix Membranes for Enhanced Removal of Reactive Black 5.

The discharge of large volumes of textile dyeing wastewater, characterized by poor biodegradability and high toxicity, poses severe threats to the environment. In this study, polyvinylidene difluoride (PVDF) membranes were prepared using the nonsolvent-induced phase separation (NIPS) method, with porous amino-functionalized mesoporous silica nanoparticles (Am-MSNs) mixed into the casting solution to fabricate the Am-MSN/PVDF mixed matrix membranes. By varying the amount of Am-MSNs added, the microstructure and overall performance of the membranes were comprehensively analyzed. The results demonstrated that the addition of Am-MSNs significantly enhanced the hydrophilicity of the membranes. The high specific surface area and amino groups of Am-MSNs facilitated interactions with dye molecules, such as Reactive Black 5 (RB5), through hydrogen bonding, electrostatic attraction, and physical adsorption, resulting in a marked improvement in RB5 rejection rates. Static adsorption tests further validated the superior adsorption capacity of the Am-MSN/PVDF mixed matrix membranes for RB5. Additionally, the nanoscale mesoporous structure of Am-MSNs enhanced the mechanical strength of the membranes. The synergistic effects of the mesoporous structure and amino groups significantly increased the efficiency and stability of the Am-MSN/PVDF mixed matrix membranes in dye removal applications, providing an effective and sustainable solution for the treatment of dye-contaminated wastewater.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Membranes
Membranes Chemical Engineering-Filtration and Separation
CiteScore
6.10
自引率
16.70%
发文量
1071
审稿时长
11 weeks
期刊介绍: Membranes (ISSN 2077-0375) is an international, peer-reviewed open access journal of separation science and technology. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信