可持续废水处理的膜技术:进展、挑战和在零液体排放(ZLD)和最小液体排放(MLD)系统中的应用。

IF 3.3 4区 工程技术 Q2 CHEMISTRY, PHYSICAL
Argyris Panagopoulos, Panagiotis Michailidis
{"title":"可持续废水处理的膜技术:进展、挑战和在零液体排放(ZLD)和最小液体排放(MLD)系统中的应用。","authors":"Argyris Panagopoulos, Panagiotis Michailidis","doi":"10.3390/membranes15020064","DOIUrl":null,"url":null,"abstract":"<p><p>As the demand for sustainable water and wastewater management continues to rise in both desalination and industrial sectors, there is been notable progress in developing Zero Liquid Discharge (ZLD) and Minimal Liquid Discharge (MLD) systems. Membrane technologies have become a key component of these systems, providing effective solutions for removing contaminants and enabling the recovery of both water and valuable resources. This article explores recent advancements in the design and operation of ZLD and MLD systems, discussing their benefits, challenges, and how they fit into larger treatment processes. Emphasis is given to membrane-based processes, such as reverse osmosis (RO), membrane distillation (MD), and forward osmosis (FO), as well as hybrid configurations, and innovative membrane materials. These advancements are designed to address critical challenges like fouling, scaling, high energy demands, and high brine production. The article also explores exciting research directions aimed at enhancing the efficiency and durability of membrane technologies in ZLD and MLD systems, paving the way for new innovations in sustainable water management across various industries.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"15 2","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11857612/pdf/","citationCount":"0","resultStr":"{\"title\":\"Membrane Technologies for Sustainable Wastewater Treatment: Advances, Challenges, and Applications in Zero Liquid Discharge (ZLD) and Minimal Liquid Discharge (MLD) Systems.\",\"authors\":\"Argyris Panagopoulos, Panagiotis Michailidis\",\"doi\":\"10.3390/membranes15020064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As the demand for sustainable water and wastewater management continues to rise in both desalination and industrial sectors, there is been notable progress in developing Zero Liquid Discharge (ZLD) and Minimal Liquid Discharge (MLD) systems. Membrane technologies have become a key component of these systems, providing effective solutions for removing contaminants and enabling the recovery of both water and valuable resources. This article explores recent advancements in the design and operation of ZLD and MLD systems, discussing their benefits, challenges, and how they fit into larger treatment processes. Emphasis is given to membrane-based processes, such as reverse osmosis (RO), membrane distillation (MD), and forward osmosis (FO), as well as hybrid configurations, and innovative membrane materials. These advancements are designed to address critical challenges like fouling, scaling, high energy demands, and high brine production. The article also explores exciting research directions aimed at enhancing the efficiency and durability of membrane technologies in ZLD and MLD systems, paving the way for new innovations in sustainable water management across various industries.</p>\",\"PeriodicalId\":18410,\"journal\":{\"name\":\"Membranes\",\"volume\":\"15 2\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11857612/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Membranes\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/membranes15020064\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/membranes15020064","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

随着海水淡化和工业部门对可持续水和废水管理的需求不断增加,在开发零液体排放(ZLD)和最小液体排放(MLD)系统方面取得了显著进展。膜技术已经成为这些系统的关键组成部分,为去除污染物和回收水和宝贵资源提供了有效的解决方案。本文探讨了ZLD和MLD系统在设计和操作方面的最新进展,讨论了它们的优点、挑战,以及它们如何适应更大的处理过程。重点是基于膜的工艺,如反渗透(RO),膜蒸馏(MD)和正向渗透(FO),以及混合配置和创新膜材料。这些进步旨在解决诸如结垢、结垢、高能耗和高卤水产量等关键挑战。本文还探讨了令人兴奋的研究方向,旨在提高膜技术在ZLD和MLD系统中的效率和耐久性,为各行各业可持续水管理的创新铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Membrane Technologies for Sustainable Wastewater Treatment: Advances, Challenges, and Applications in Zero Liquid Discharge (ZLD) and Minimal Liquid Discharge (MLD) Systems.

As the demand for sustainable water and wastewater management continues to rise in both desalination and industrial sectors, there is been notable progress in developing Zero Liquid Discharge (ZLD) and Minimal Liquid Discharge (MLD) systems. Membrane technologies have become a key component of these systems, providing effective solutions for removing contaminants and enabling the recovery of both water and valuable resources. This article explores recent advancements in the design and operation of ZLD and MLD systems, discussing their benefits, challenges, and how they fit into larger treatment processes. Emphasis is given to membrane-based processes, such as reverse osmosis (RO), membrane distillation (MD), and forward osmosis (FO), as well as hybrid configurations, and innovative membrane materials. These advancements are designed to address critical challenges like fouling, scaling, high energy demands, and high brine production. The article also explores exciting research directions aimed at enhancing the efficiency and durability of membrane technologies in ZLD and MLD systems, paving the way for new innovations in sustainable water management across various industries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Membranes
Membranes Chemical Engineering-Filtration and Separation
CiteScore
6.10
自引率
16.70%
发文量
1071
审稿时长
11 weeks
期刊介绍: Membranes (ISSN 2077-0375) is an international, peer-reviewed open access journal of separation science and technology. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信