海洋环境中脂类的产生、运输、命运和影响。

IF 4.9 2区 医学 Q1 CHEMISTRY, MEDICINAL
Marine Drugs Pub Date : 2025-01-21 DOI:10.3390/md23020052
Christopher C Parrish
{"title":"海洋环境中脂类的产生、运输、命运和影响。","authors":"Christopher C Parrish","doi":"10.3390/md23020052","DOIUrl":null,"url":null,"abstract":"<p><p>Lipids form energy storage depots, cellular barriers and signaling molecules. They are generated and metabolized by enzymes under the influence of biotic and abiotic factors, and some-the long-chain polyunsaturated ω3 and ω6 fatty acids and cholesterol-are essential for optimal health in marine organisms. In addition, lipids have direct and indirect roles in the control of buoyancy in marine fauna ranging from copepods to whales. Phytoplankton account for about half of the planet's carbon fixation, and about half of that carbon goes into lipids. Lipids are an important component of the ocean's ability to sequester carbon away from the atmosphere through sinking and especially after transfer to zooplankton. Phytoplankton are the main suppliers of ω3 polyunsaturated fatty acids (PUFAs) in the marine environment. They also supply cholesterol and many phytosterols to ocean ecosystems; however, genomics is indicating that members of the Cnidaria, Rotifera, Annelida, and Mollusca phyla also have the endogenous capacity for the de novo synthesis of ω3 PUFAs as well as phytosterols. It has been predicted that ω3 long-chain PUFAs will decrease in marine organisms with climate change, with implications for human consumption and for carbon sequestration; however, the responses of ω3 PUFA supply to future conditions are likely to be quite diverse.</p>","PeriodicalId":18222,"journal":{"name":"Marine Drugs","volume":"23 2","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11857299/pdf/","citationCount":"0","resultStr":"{\"title\":\"Production, Transport, Fate and Effects of Lipids in the Marine Environment.\",\"authors\":\"Christopher C Parrish\",\"doi\":\"10.3390/md23020052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lipids form energy storage depots, cellular barriers and signaling molecules. They are generated and metabolized by enzymes under the influence of biotic and abiotic factors, and some-the long-chain polyunsaturated ω3 and ω6 fatty acids and cholesterol-are essential for optimal health in marine organisms. In addition, lipids have direct and indirect roles in the control of buoyancy in marine fauna ranging from copepods to whales. Phytoplankton account for about half of the planet's carbon fixation, and about half of that carbon goes into lipids. Lipids are an important component of the ocean's ability to sequester carbon away from the atmosphere through sinking and especially after transfer to zooplankton. Phytoplankton are the main suppliers of ω3 polyunsaturated fatty acids (PUFAs) in the marine environment. They also supply cholesterol and many phytosterols to ocean ecosystems; however, genomics is indicating that members of the Cnidaria, Rotifera, Annelida, and Mollusca phyla also have the endogenous capacity for the de novo synthesis of ω3 PUFAs as well as phytosterols. It has been predicted that ω3 long-chain PUFAs will decrease in marine organisms with climate change, with implications for human consumption and for carbon sequestration; however, the responses of ω3 PUFA supply to future conditions are likely to be quite diverse.</p>\",\"PeriodicalId\":18222,\"journal\":{\"name\":\"Marine Drugs\",\"volume\":\"23 2\",\"pages\":\"\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11857299/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Drugs\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/md23020052\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Drugs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/md23020052","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

脂质形成能量储存库、细胞屏障和信号分子。它们在生物和非生物因素的影响下由酶产生和代谢,其中一些-长链多不饱和ω3和ω6脂肪酸和胆固醇-是海洋生物最佳健康所必需的。此外,脂类在从桡足类到鲸鱼等海洋动物的浮力控制中具有直接和间接的作用。浮游植物约占地球固定碳的一半,其中约一半的碳进入脂质。脂质是海洋通过下沉将碳从大气中隔离出来的能力的重要组成部分,尤其是在转移到浮游动物之后。浮游植物是海洋环境中ω - 3多不饱和脂肪酸(PUFAs)的主要供体。它们还为海洋生态系统提供胆固醇和许多植物甾醇;然而,基因组学表明,刺胞门、轮虫门、环节动物门和软体动物门的成员也具有重新合成ω3 PUFAs和植物甾醇的内源性能力。据预测,随着气候变化,海洋生物中ω - 3长链PUFAs将减少,这对人类消费和碳封存有影响;然而,ω3 PUFA供应对未来条件的响应可能是相当多样化的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Production, Transport, Fate and Effects of Lipids in the Marine Environment.

Lipids form energy storage depots, cellular barriers and signaling molecules. They are generated and metabolized by enzymes under the influence of biotic and abiotic factors, and some-the long-chain polyunsaturated ω3 and ω6 fatty acids and cholesterol-are essential for optimal health in marine organisms. In addition, lipids have direct and indirect roles in the control of buoyancy in marine fauna ranging from copepods to whales. Phytoplankton account for about half of the planet's carbon fixation, and about half of that carbon goes into lipids. Lipids are an important component of the ocean's ability to sequester carbon away from the atmosphere through sinking and especially after transfer to zooplankton. Phytoplankton are the main suppliers of ω3 polyunsaturated fatty acids (PUFAs) in the marine environment. They also supply cholesterol and many phytosterols to ocean ecosystems; however, genomics is indicating that members of the Cnidaria, Rotifera, Annelida, and Mollusca phyla also have the endogenous capacity for the de novo synthesis of ω3 PUFAs as well as phytosterols. It has been predicted that ω3 long-chain PUFAs will decrease in marine organisms with climate change, with implications for human consumption and for carbon sequestration; however, the responses of ω3 PUFA supply to future conditions are likely to be quite diverse.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Marine Drugs
Marine Drugs 医学-医药化学
CiteScore
9.60
自引率
14.80%
发文量
671
审稿时长
1 months
期刊介绍: Marine Drugs (ISSN 1660-3397) publishes reviews, regular research papers and short notes on the research, development and production of drugs from the sea. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible, particularly synthetic procedures and characterization information for bioactive compounds. There is no restriction on the length of the experimental section.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信