观察钙钛矿太阳能电池的界面:第一性原理视角。

IF 2.6 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Xu-Tong Liu, Jinshan Li, Xie Zhang
{"title":"观察钙钛矿太阳能电池的界面:第一性原理视角。","authors":"Xu-Tong Liu, Jinshan Li, Xie Zhang","doi":"10.1088/1361-648X/adb9ad","DOIUrl":null,"url":null,"abstract":"<p><p>Over the past decade, perovskite solar cells (PSCs) have experienced a rapid development. The remarkable increase in the photoelectric conversion efficiency demonstrates great promise of halide perovskites in the field of photovoltaics. Despite the excellent photovoltaic performance, further efforts are needed to enhance efficiency and stability. Interfacial engineering plays a crucial role in enhancing the efficiency and stability of PSCs, enabling champion cells to sustain a power conversion efficiency above 26% for over 1000 h. As a powerful theoretical tool for characterizing interfaces in PSCs, first-principles calculations have contributed to understanding interfacial properties and guiding the materials design. In this Perspective, we highlight the recent progress in theoretically profiling the interfaces between halide perovskites and other materials, focusing on the effects of energy band alignment and electronic structure on the carrier transport at the interfaces. These first-principles calculations help to reveal the atomic and electronic properties of the interfaces, and to provide important theoretical guidance for experimental research and device optimization. We also analyze potential strategies to enhance carrier separation and transport in PSCs, and discuss the challenges in accurate modeling interfaces in PSCs, which will help to understand the fundamental physics of interfaces in PSCs and to guide their further optimization.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Peering into interfaces in perovskite solar cells: a first-principles perspective.\",\"authors\":\"Xu-Tong Liu, Jinshan Li, Xie Zhang\",\"doi\":\"10.1088/1361-648X/adb9ad\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Over the past decade, perovskite solar cells (PSCs) have experienced a rapid development. The remarkable increase in the photoelectric conversion efficiency demonstrates great promise of halide perovskites in the field of photovoltaics. Despite the excellent photovoltaic performance, further efforts are needed to enhance efficiency and stability. Interfacial engineering plays a crucial role in enhancing the efficiency and stability of PSCs, enabling champion cells to sustain a power conversion efficiency above 26% for over 1000 h. As a powerful theoretical tool for characterizing interfaces in PSCs, first-principles calculations have contributed to understanding interfacial properties and guiding the materials design. In this Perspective, we highlight the recent progress in theoretically profiling the interfaces between halide perovskites and other materials, focusing on the effects of energy band alignment and electronic structure on the carrier transport at the interfaces. These first-principles calculations help to reveal the atomic and electronic properties of the interfaces, and to provide important theoretical guidance for experimental research and device optimization. We also analyze potential strategies to enhance carrier separation and transport in PSCs, and discuss the challenges in accurate modeling interfaces in PSCs, which will help to understand the fundamental physics of interfaces in PSCs and to guide their further optimization.</p>\",\"PeriodicalId\":16776,\"journal\":{\"name\":\"Journal of Physics: Condensed Matter\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics: Condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-648X/adb9ad\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/adb9ad","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

在过去的十年中,钙钛矿太阳能电池经历了快速的发展。光电转换效率的显著提高显示了卤化物钙钛矿在光伏领域的巨大前景。尽管光伏性能优异,但需要进一步努力提高效率和稳定性。界面工程在提高钙钛矿太阳能电池的效率和稳定性方面起着至关重要的作用,使冠军电池能够在1000小时以上保持26%以上的功率转换效率。第一性原理计算作为表征钙钛矿太阳能电池界面的有力理论工具,有助于理解界面性质和指导材料设计。本文重点介绍了卤化物钙钛矿与其他材料界面理论分析的最新进展,重点讨论了能带取向和电子结构对界面载流子输运的影响。这些第一性原理计算有助于揭示界面的原子和电子性质,并为实验研究和器件优化提供重要的理论指导。我们还分析了增强钙钛矿太阳能电池中载流子分离和输运的潜在策略,并讨论了钙钛矿太阳能电池中界面精确建模所面临的挑战,这将有助于理解钙钛矿太阳能电池中界面的基本物理特性,并指导其进一步优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Peering into interfaces in perovskite solar cells: a first-principles perspective.

Over the past decade, perovskite solar cells (PSCs) have experienced a rapid development. The remarkable increase in the photoelectric conversion efficiency demonstrates great promise of halide perovskites in the field of photovoltaics. Despite the excellent photovoltaic performance, further efforts are needed to enhance efficiency and stability. Interfacial engineering plays a crucial role in enhancing the efficiency and stability of PSCs, enabling champion cells to sustain a power conversion efficiency above 26% for over 1000 h. As a powerful theoretical tool for characterizing interfaces in PSCs, first-principles calculations have contributed to understanding interfacial properties and guiding the materials design. In this Perspective, we highlight the recent progress in theoretically profiling the interfaces between halide perovskites and other materials, focusing on the effects of energy band alignment and electronic structure on the carrier transport at the interfaces. These first-principles calculations help to reveal the atomic and electronic properties of the interfaces, and to provide important theoretical guidance for experimental research and device optimization. We also analyze potential strategies to enhance carrier separation and transport in PSCs, and discuss the challenges in accurate modeling interfaces in PSCs, which will help to understand the fundamental physics of interfaces in PSCs and to guide their further optimization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physics: Condensed Matter
Journal of Physics: Condensed Matter 物理-物理:凝聚态物理
CiteScore
5.30
自引率
7.40%
发文量
1288
审稿时长
2.1 months
期刊介绍: Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信