红树林生态系统恢复过程中土壤真菌群落和营养模式的变化

IF 4.2 2区 生物学 Q2 MICROBIOLOGY
Xiaofang Shi, Shengyao Zhou, Lanzi Xu, Rajapakshalage Thashikala Nethmini, Yu Zhang, Liangliang Huang, Ke Dong, Huaxian Zhao, Lianghao Pan
{"title":"红树林生态系统恢复过程中土壤真菌群落和营养模式的变化","authors":"Xiaofang Shi, Shengyao Zhou, Lanzi Xu, Rajapakshalage Thashikala Nethmini, Yu Zhang, Liangliang Huang, Ke Dong, Huaxian Zhao, Lianghao Pan","doi":"10.3390/jof11020146","DOIUrl":null,"url":null,"abstract":"<p><p>Mangrove ecosystems are valuable coastal ecosystems; however, studies on the diversity and functional features of their soil fungal communities during restoration are limited. In this study, we examined fungal diversity and trophic modes across mudflat, young mangrove, and mature mangrove stages. We found that Ascomycota and Basidiomycota were the dominant phyla, with saprotrophs as the most abundant trophic mode. The abundance of the major phyla and trophic modes significantly varied across restoration stages. Although fungal alpha (α)-diversity remained stable among the stages, beta (β)-diversity showed significant differentiation. Spearman's analysis and partial Mantel tests revealed that total nitrogen and inorganic phosphorus significantly influenced the fungal α-diversity, whereas temperature and pH primarily shaped the fungal β-diversity. Total nitrogen and carbon were key factors affecting the trophic mode α-diversity, whereas total phosphorus and inorganic phosphorus were the main drivers of the trophic mode β-diversity. Variation partitioning analysis confirmed that nutrients, rather than soil properties, were the primary factors shaping fungal communities and trophic modes. Random forest analysis identified key bioindicators, including species such as Paraphyton cookei, and trophic modes such as saprotrophs, both of which were strongly influenced by soil carbon. These findings advance our understanding of fungal ecology in mangrove restoration.</p>","PeriodicalId":15878,"journal":{"name":"Journal of Fungi","volume":"11 2","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11856337/pdf/","citationCount":"0","resultStr":"{\"title\":\"Shifts in Soil Fungal Community and Trophic Modes During Mangrove Ecosystem Restoration.\",\"authors\":\"Xiaofang Shi, Shengyao Zhou, Lanzi Xu, Rajapakshalage Thashikala Nethmini, Yu Zhang, Liangliang Huang, Ke Dong, Huaxian Zhao, Lianghao Pan\",\"doi\":\"10.3390/jof11020146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mangrove ecosystems are valuable coastal ecosystems; however, studies on the diversity and functional features of their soil fungal communities during restoration are limited. In this study, we examined fungal diversity and trophic modes across mudflat, young mangrove, and mature mangrove stages. We found that Ascomycota and Basidiomycota were the dominant phyla, with saprotrophs as the most abundant trophic mode. The abundance of the major phyla and trophic modes significantly varied across restoration stages. Although fungal alpha (α)-diversity remained stable among the stages, beta (β)-diversity showed significant differentiation. Spearman's analysis and partial Mantel tests revealed that total nitrogen and inorganic phosphorus significantly influenced the fungal α-diversity, whereas temperature and pH primarily shaped the fungal β-diversity. Total nitrogen and carbon were key factors affecting the trophic mode α-diversity, whereas total phosphorus and inorganic phosphorus were the main drivers of the trophic mode β-diversity. Variation partitioning analysis confirmed that nutrients, rather than soil properties, were the primary factors shaping fungal communities and trophic modes. Random forest analysis identified key bioindicators, including species such as Paraphyton cookei, and trophic modes such as saprotrophs, both of which were strongly influenced by soil carbon. These findings advance our understanding of fungal ecology in mangrove restoration.</p>\",\"PeriodicalId\":15878,\"journal\":{\"name\":\"Journal of Fungi\",\"volume\":\"11 2\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11856337/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fungi\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/jof11020146\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fungi","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/jof11020146","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

红树林生态系统是宝贵的沿海生态系统;然而,对其恢复过程中土壤真菌群落的多样性和功能特征的研究较少。在这项研究中,我们研究了泥滩、年轻红树林和成熟红树林阶段的真菌多样性和营养模式。子囊菌门和担子菌门是优势门,腐生菌是最丰富的营养模式。各恢复阶段主要门和营养模式的丰度差异显著。真菌α (α)多样性在不同阶段保持稳定,β (β)多样性呈现显著分化。Spearman分析和部分Mantel试验表明,总氮和无机磷显著影响真菌α-多样性,而温度和pH主要影响真菌β-多样性。总氮和总碳是影响营养模式α-多样性的关键因子,而总磷和无机磷是影响营养模式β-多样性的主要驱动因子。变异分配分析证实,养分是影响真菌群落和营养模式的主要因素,而不是土壤性质。随机森林分析确定了关键的生物指标,包括类群(Paraphyton cookei)和营养模式(saprotrophs),两者都受到土壤碳的强烈影响。这些发现促进了我们对红树林恢复过程中真菌生态学的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shifts in Soil Fungal Community and Trophic Modes During Mangrove Ecosystem Restoration.

Mangrove ecosystems are valuable coastal ecosystems; however, studies on the diversity and functional features of their soil fungal communities during restoration are limited. In this study, we examined fungal diversity and trophic modes across mudflat, young mangrove, and mature mangrove stages. We found that Ascomycota and Basidiomycota were the dominant phyla, with saprotrophs as the most abundant trophic mode. The abundance of the major phyla and trophic modes significantly varied across restoration stages. Although fungal alpha (α)-diversity remained stable among the stages, beta (β)-diversity showed significant differentiation. Spearman's analysis and partial Mantel tests revealed that total nitrogen and inorganic phosphorus significantly influenced the fungal α-diversity, whereas temperature and pH primarily shaped the fungal β-diversity. Total nitrogen and carbon were key factors affecting the trophic mode α-diversity, whereas total phosphorus and inorganic phosphorus were the main drivers of the trophic mode β-diversity. Variation partitioning analysis confirmed that nutrients, rather than soil properties, were the primary factors shaping fungal communities and trophic modes. Random forest analysis identified key bioindicators, including species such as Paraphyton cookei, and trophic modes such as saprotrophs, both of which were strongly influenced by soil carbon. These findings advance our understanding of fungal ecology in mangrove restoration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Fungi
Journal of Fungi Medicine-Microbiology (medical)
CiteScore
6.70
自引率
14.90%
发文量
1151
审稿时长
11 weeks
期刊介绍: Journal of Fungi (ISSN 2309-608X) is an international, peer-reviewed scientific open access journal that provides an advanced forum for studies related to pathogenic fungi, fungal biology, and all other aspects of fungal research. The journal publishes reviews, regular research papers, and communications in quarterly issues. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on paper length. Full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信