NTMFF-DTA:基于网络拓扑和多特征融合的药物-靶标亲和力预测。

IF 3.9 2区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Yuandong Liu, Youzhi Liu, Haoqin Yang, Longbo Zhang, Kai Che, Linlin Xing
{"title":"NTMFF-DTA:基于网络拓扑和多特征融合的药物-靶标亲和力预测。","authors":"Yuandong Liu, Youzhi Liu, Haoqin Yang, Longbo Zhang, Kai Che, Linlin Xing","doi":"10.1007/s12539-025-00692-9","DOIUrl":null,"url":null,"abstract":"<p><p>Predicting drug-target binding affinity (DTA) is an important step in the complex process of drug discovery or drug repositioning. A large number of computational methods proposed for the task of DTA prediction utilize single features of proteins to measure drug-protein or protein-protein interactions, ignoring multi-feature fusion between protein-related features (e.g., solvent accessibility, protein pockets, secondary structures, and distance maps, etc.). To address the aforementioned constraints, we propose a new network topology and multi-feature fusion based approach for DTA prediction (NTMFF-DTA), which deeply mines protein multiple types of data and propagates drug information across domains. Data in drug-target interactions are often sparse, and multi-feature fusion can enrich data information by integrating multiple features, thus overcoming the data sparsity problem to some extent. The proposed approach offers two main contributions: (1) constructing a relationship-aware GAT that selectively focuses on the connections between nodes and edges in the molecular graph to capture the more central roles of nodes and edges in DTA prediction and (2) constructing an information propagation channel between different feature domains of drug proteins to achieve the sharing of the importance weight of drug atoms and edges, and combining with a multi-head self-attention mechanism to capture residue-enhancing features. The NTMFF-DTA model was comparatively tested against several leading baseline technologies on commonly used datasets. Experimental show that NTMFF-DTA can effectively and accurately predict DTA and outperform existing comparative models.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NTMFF-DTA: Prediction of Drug-Target Affinity Based on Network Topology and Multi-feature Fusion.\",\"authors\":\"Yuandong Liu, Youzhi Liu, Haoqin Yang, Longbo Zhang, Kai Che, Linlin Xing\",\"doi\":\"10.1007/s12539-025-00692-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Predicting drug-target binding affinity (DTA) is an important step in the complex process of drug discovery or drug repositioning. A large number of computational methods proposed for the task of DTA prediction utilize single features of proteins to measure drug-protein or protein-protein interactions, ignoring multi-feature fusion between protein-related features (e.g., solvent accessibility, protein pockets, secondary structures, and distance maps, etc.). To address the aforementioned constraints, we propose a new network topology and multi-feature fusion based approach for DTA prediction (NTMFF-DTA), which deeply mines protein multiple types of data and propagates drug information across domains. Data in drug-target interactions are often sparse, and multi-feature fusion can enrich data information by integrating multiple features, thus overcoming the data sparsity problem to some extent. The proposed approach offers two main contributions: (1) constructing a relationship-aware GAT that selectively focuses on the connections between nodes and edges in the molecular graph to capture the more central roles of nodes and edges in DTA prediction and (2) constructing an information propagation channel between different feature domains of drug proteins to achieve the sharing of the importance weight of drug atoms and edges, and combining with a multi-head self-attention mechanism to capture residue-enhancing features. The NTMFF-DTA model was comparatively tested against several leading baseline technologies on commonly used datasets. Experimental show that NTMFF-DTA can effectively and accurately predict DTA and outperform existing comparative models.</p>\",\"PeriodicalId\":13670,\"journal\":{\"name\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12539-025-00692-9\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-025-00692-9","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

预测药物靶标结合亲和力(DTA)是药物发现或重新定位的复杂过程中的重要步骤。为DTA预测任务提出的大量计算方法利用蛋白质的单一特征来测量药物-蛋白质或蛋白质-蛋白质相互作用,忽略了蛋白质相关特征(例如,溶剂可及性,蛋白质口袋,二级结构和距离图等)之间的多特征融合。为了解决上述限制,我们提出了一种新的基于网络拓扑和多特征融合的DTA预测方法(NTMFF-DTA),该方法深入挖掘蛋白质多种类型的数据并跨域传播药物信息。药物-靶标相互作用中的数据往往是稀疏的,多特征融合可以通过整合多个特征来丰富数据信息,从而在一定程度上克服了数据稀疏性问题。拟议的方法提供了两个主要贡献:(1)构建关系感知GAT,选择性地关注分子图中节点和边之间的连接,捕捉节点和边在DTA预测中更为中心的作用;(2)构建药物蛋白不同特征域之间的信息传播通道,实现药物原子和边的重要权重共享,并结合头部自关注机制捕捉残差增强特征。NTMFF-DTA模型在常用数据集上与几种领先的基线技术进行了比较测试。实验表明,NTMFF-DTA能够有效、准确地预测DTA,优于现有的比较模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NTMFF-DTA: Prediction of Drug-Target Affinity Based on Network Topology and Multi-feature Fusion.

Predicting drug-target binding affinity (DTA) is an important step in the complex process of drug discovery or drug repositioning. A large number of computational methods proposed for the task of DTA prediction utilize single features of proteins to measure drug-protein or protein-protein interactions, ignoring multi-feature fusion between protein-related features (e.g., solvent accessibility, protein pockets, secondary structures, and distance maps, etc.). To address the aforementioned constraints, we propose a new network topology and multi-feature fusion based approach for DTA prediction (NTMFF-DTA), which deeply mines protein multiple types of data and propagates drug information across domains. Data in drug-target interactions are often sparse, and multi-feature fusion can enrich data information by integrating multiple features, thus overcoming the data sparsity problem to some extent. The proposed approach offers two main contributions: (1) constructing a relationship-aware GAT that selectively focuses on the connections between nodes and edges in the molecular graph to capture the more central roles of nodes and edges in DTA prediction and (2) constructing an information propagation channel between different feature domains of drug proteins to achieve the sharing of the importance weight of drug atoms and edges, and combining with a multi-head self-attention mechanism to capture residue-enhancing features. The NTMFF-DTA model was comparatively tested against several leading baseline technologies on commonly used datasets. Experimental show that NTMFF-DTA can effectively and accurately predict DTA and outperform existing comparative models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Interdisciplinary Sciences: Computational Life Sciences
Interdisciplinary Sciences: Computational Life Sciences MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
8.60
自引率
4.20%
发文量
55
期刊介绍: Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology. The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer. The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信