Dávid Nyul, Mónika Kéri, Levente Novák, Hanna Szabó, Attila Csík, István Bányai
{"title":"液体环境中氧化石墨烯掺杂碳气凝胶的核磁共振表征。","authors":"Dávid Nyul, Mónika Kéri, Levente Novák, Hanna Szabó, Attila Csík, István Bányai","doi":"10.3390/gels11020129","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we report the findings of a morphological analysis of a resorcinol-formaldehyde (RF)-based carbon aerogel (CA) and its graphene oxide (GO)-doped version (CA-GO), prepared for possible applications as an electrode material. Beyond some electron microscopic and N<sub>2</sub> sorption investigations, we mostly used NMR cryoporometry and relaxometry to characterize the gels in a wet state, as they are usually applied. The precursor RF polymer aerogel was prepared both with and without GO and was subsequently carbonized into carbon aerogel. Modifying the polymer aerogel using GO resulted in a larger variety of C-O bonds in both polymer aerogels. However, the most important changes occurred in the morphology of the carbon aerogels. NMR relaxometry revealed the highly hydrophilic nature of the pore wall of the RF polymer aerogels, as demonstrated by their uniform wetting behavior. The carbonization resulted in a mostly hydrophobic pore wall decorated by some oxygen-containing spots and a macroporous system. Doping with GO after pyrolysis resulted in spherical pores in the CA and cylindrical pores in the CA-GO, which is potentially a more promising material for electrochemical use than CA.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":"11 2","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11855333/pdf/","citationCount":"0","resultStr":"{\"title\":\"NMR Characterization of Graphene Oxide-Doped Carbon Aerogel in a Liquid Environment.\",\"authors\":\"Dávid Nyul, Mónika Kéri, Levente Novák, Hanna Szabó, Attila Csík, István Bányai\",\"doi\":\"10.3390/gels11020129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, we report the findings of a morphological analysis of a resorcinol-formaldehyde (RF)-based carbon aerogel (CA) and its graphene oxide (GO)-doped version (CA-GO), prepared for possible applications as an electrode material. Beyond some electron microscopic and N<sub>2</sub> sorption investigations, we mostly used NMR cryoporometry and relaxometry to characterize the gels in a wet state, as they are usually applied. The precursor RF polymer aerogel was prepared both with and without GO and was subsequently carbonized into carbon aerogel. Modifying the polymer aerogel using GO resulted in a larger variety of C-O bonds in both polymer aerogels. However, the most important changes occurred in the morphology of the carbon aerogels. NMR relaxometry revealed the highly hydrophilic nature of the pore wall of the RF polymer aerogels, as demonstrated by their uniform wetting behavior. The carbonization resulted in a mostly hydrophobic pore wall decorated by some oxygen-containing spots and a macroporous system. Doping with GO after pyrolysis resulted in spherical pores in the CA and cylindrical pores in the CA-GO, which is potentially a more promising material for electrochemical use than CA.</p>\",\"PeriodicalId\":12506,\"journal\":{\"name\":\"Gels\",\"volume\":\"11 2\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11855333/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gels\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/gels11020129\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gels","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/gels11020129","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
NMR Characterization of Graphene Oxide-Doped Carbon Aerogel in a Liquid Environment.
In this study, we report the findings of a morphological analysis of a resorcinol-formaldehyde (RF)-based carbon aerogel (CA) and its graphene oxide (GO)-doped version (CA-GO), prepared for possible applications as an electrode material. Beyond some electron microscopic and N2 sorption investigations, we mostly used NMR cryoporometry and relaxometry to characterize the gels in a wet state, as they are usually applied. The precursor RF polymer aerogel was prepared both with and without GO and was subsequently carbonized into carbon aerogel. Modifying the polymer aerogel using GO resulted in a larger variety of C-O bonds in both polymer aerogels. However, the most important changes occurred in the morphology of the carbon aerogels. NMR relaxometry revealed the highly hydrophilic nature of the pore wall of the RF polymer aerogels, as demonstrated by their uniform wetting behavior. The carbonization resulted in a mostly hydrophobic pore wall decorated by some oxygen-containing spots and a macroporous system. Doping with GO after pyrolysis resulted in spherical pores in the CA and cylindrical pores in the CA-GO, which is potentially a more promising material for electrochemical use than CA.
期刊介绍:
The journal Gels (ISSN 2310-2861) is an international, open access journal on physical (supramolecular) and chemical gel-based materials. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the maximum length of the papers, and full experimental details must be provided so that the results can be reproduced. Short communications, full research papers and review papers are accepted formats for the preparation of the manuscripts.
Gels aims to serve as a reference journal with a focus on gel materials for researchers working in both academia and industry. Therefore, papers demonstrating practical applications of these materials are particularly welcome. Occasionally, invited contributions (i.e., original research and review articles) on emerging issues and high-tech applications of gels are published as special issues.