操作性需求框架下的自适应采购任务。

IF 2.2 3区 医学 Q3 PHARMACOLOGY & PHARMACY
Experimental and clinical psychopharmacology Pub Date : 2025-04-01 Epub Date: 2025-02-24 DOI:10.1037/pha0000757
Shawn P Gilroy, Mark J Rzeszutek, Mikhail N Koffarnus, Derek D Reed, Steven R Hursh
{"title":"操作性需求框架下的自适应采购任务。","authors":"Shawn P Gilroy, Mark J Rzeszutek, Mikhail N Koffarnus, Derek D Reed, Steven R Hursh","doi":"10.1037/pha0000757","DOIUrl":null,"url":null,"abstract":"<p><p>Various avenues exist for quantifying the effects of reinforcers on behavior. Numerous nonlinear models derived from the framework of Hursh and Silberberg (2008) are often applied to elucidate key metrics in the operant demand framework (e.g., <i>Q</i>₀, <i>P</i><sub>MAX</sub>), with each approach presenting respective strengths and trade-offs. This work introduces and demonstrates an adaptive task capable of elucidating key features of operant demand without relying on nonlinear regression (i.e., a targeted form of empirical <i>P</i><sub>MAX</sub>). An adaptive algorithm based on reinforcement learning is used to systematically guide questioning in the search for participant-level estimates related to peak work (e.g., <i>P</i><sub>MAX</sub>), and this algorithm was evaluated across four varying iteration lengths (i.e., five, 10, 15, and 20 sequentially updated questions). Equivalence testing with simulated agent responses revealed that tasks with five or more sequentially updated questions recovered <i>P</i><sub>MAX</sub> values statistically equivalent to seeded <i>P</i><sub>MAX</sub> values, which provided evidence suggesting that quantitative modeling (i.e., nonlinear regression) may not be necessary to reveal valuable features of reinforcer consumption and how consumption scales as a function of price. Discussions are presented regarding extensions of contemporary hypothetical purchase tasks and strategies for extracting and comparing critical aspects of consumer demand. (PsycInfo Database Record (c) 2025 APA, all rights reserved).</p>","PeriodicalId":12089,"journal":{"name":"Experimental and clinical psychopharmacology","volume":" ","pages":"199-208"},"PeriodicalIF":2.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive purchase tasks in the operant demand framework.\",\"authors\":\"Shawn P Gilroy, Mark J Rzeszutek, Mikhail N Koffarnus, Derek D Reed, Steven R Hursh\",\"doi\":\"10.1037/pha0000757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Various avenues exist for quantifying the effects of reinforcers on behavior. Numerous nonlinear models derived from the framework of Hursh and Silberberg (2008) are often applied to elucidate key metrics in the operant demand framework (e.g., <i>Q</i>₀, <i>P</i><sub>MAX</sub>), with each approach presenting respective strengths and trade-offs. This work introduces and demonstrates an adaptive task capable of elucidating key features of operant demand without relying on nonlinear regression (i.e., a targeted form of empirical <i>P</i><sub>MAX</sub>). An adaptive algorithm based on reinforcement learning is used to systematically guide questioning in the search for participant-level estimates related to peak work (e.g., <i>P</i><sub>MAX</sub>), and this algorithm was evaluated across four varying iteration lengths (i.e., five, 10, 15, and 20 sequentially updated questions). Equivalence testing with simulated agent responses revealed that tasks with five or more sequentially updated questions recovered <i>P</i><sub>MAX</sub> values statistically equivalent to seeded <i>P</i><sub>MAX</sub> values, which provided evidence suggesting that quantitative modeling (i.e., nonlinear regression) may not be necessary to reveal valuable features of reinforcer consumption and how consumption scales as a function of price. Discussions are presented regarding extensions of contemporary hypothetical purchase tasks and strategies for extracting and comparing critical aspects of consumer demand. (PsycInfo Database Record (c) 2025 APA, all rights reserved).</p>\",\"PeriodicalId\":12089,\"journal\":{\"name\":\"Experimental and clinical psychopharmacology\",\"volume\":\" \",\"pages\":\"199-208\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental and clinical psychopharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1037/pha0000757\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental and clinical psychopharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1037/pha0000757","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/24 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

有多种途径可以量化强化物对行为的影响。从Hursh和Silberberg(2008)的框架中衍生出来的许多非线性模型经常被用于阐明操作性需求框架中的关键指标(例如,Q 0, PMAX),每种方法都展示了各自的优势和权衡。这项工作介绍并展示了一个自适应任务,能够在不依赖非线性回归(即经验PMAX的目标形式)的情况下阐明操作性需求的关键特征。基于强化学习的自适应算法用于系统地引导问题搜索与峰值工作(例如,PMAX)相关的参与者水平估计,并且该算法在四个不同的迭代长度(即5、10、15和20个顺序更新的问题)上进行评估。模拟agent响应的等价检验表明,具有5个或更多顺序更新问题的任务恢复的PMAX值在统计上等同于种子PMAX值,这提供了证据,表明定量建模(即非线性回归)可能不需要揭示强化物消费的有价值特征以及消费如何作为价格的函数。讨论提出了关于当代假设的购买任务和策略的扩展,以提取和比较消费者需求的关键方面。(PsycInfo Database Record (c) 2025 APA,版权所有)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive purchase tasks in the operant demand framework.

Various avenues exist for quantifying the effects of reinforcers on behavior. Numerous nonlinear models derived from the framework of Hursh and Silberberg (2008) are often applied to elucidate key metrics in the operant demand framework (e.g., Q₀, PMAX), with each approach presenting respective strengths and trade-offs. This work introduces and demonstrates an adaptive task capable of elucidating key features of operant demand without relying on nonlinear regression (i.e., a targeted form of empirical PMAX). An adaptive algorithm based on reinforcement learning is used to systematically guide questioning in the search for participant-level estimates related to peak work (e.g., PMAX), and this algorithm was evaluated across four varying iteration lengths (i.e., five, 10, 15, and 20 sequentially updated questions). Equivalence testing with simulated agent responses revealed that tasks with five or more sequentially updated questions recovered PMAX values statistically equivalent to seeded PMAX values, which provided evidence suggesting that quantitative modeling (i.e., nonlinear regression) may not be necessary to reveal valuable features of reinforcer consumption and how consumption scales as a function of price. Discussions are presented regarding extensions of contemporary hypothetical purchase tasks and strategies for extracting and comparing critical aspects of consumer demand. (PsycInfo Database Record (c) 2025 APA, all rights reserved).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.20
自引率
8.70%
发文量
164
审稿时长
6-12 weeks
期刊介绍: Experimental and Clinical Psychopharmacology publishes advances in translational and interdisciplinary research on psychopharmacology, broadly defined, and/or substance abuse.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信