{"title":"静息状态脑电图固有神经时间标的重测信度。","authors":"Xiaoling Tang, Shan Wang, Xinye Xu, Wenbo Luo, Mingming Zhang","doi":"10.1093/cercor/bhaf034","DOIUrl":null,"url":null,"abstract":"<p><p>Intrinsic neural timescales, which reflect the duration of neural information storage within local brain regions and capacity for information integration, are typically measured using autocorrelation windows (ACWs). Extraction of intrinsic neural timescales from resting-state brain activity has been extensively applied in psychiatric disease research. Given the potential of intrinsic neural timescales as a neural marker for psychiatric disorders, investigating their reliability is crucial. This study, using an open-source database, aimed to evaluate the test-retest reliability of ACW-0 and ACW-50 under both eyes-open and eyes-closed conditions across three sessions. The intraclass correlation coefficients (ICCs) were employed to quantify the reliability of the intrinsic neural timescales. Our results showed that intrinsic neural timescales exhibited good reliability (ICC > 0.6) at the whole-brain level across different index types and eye states. Spatially, except for the right temporal region in the eyes-open condition, all other regions showed moderate-to-high ICCs. Over 60% of the electrodes demonstrated moderate-to-high intrinsic neural timescale ICCs under both eyes-open and eyes-closed conditions, with ACW-0 being more stable than ACW-50. Moreover, in the new dataset, the above results were consistently reproduced. The present study comprehensively assessed the reliability of intrinsic neural timescale under various conditions, providing robust evidence for their stability in neuroscience and psychiatry.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"35 2","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Test-retest reliability of resting-state EEG intrinsic neural timescales.\",\"authors\":\"Xiaoling Tang, Shan Wang, Xinye Xu, Wenbo Luo, Mingming Zhang\",\"doi\":\"10.1093/cercor/bhaf034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Intrinsic neural timescales, which reflect the duration of neural information storage within local brain regions and capacity for information integration, are typically measured using autocorrelation windows (ACWs). Extraction of intrinsic neural timescales from resting-state brain activity has been extensively applied in psychiatric disease research. Given the potential of intrinsic neural timescales as a neural marker for psychiatric disorders, investigating their reliability is crucial. This study, using an open-source database, aimed to evaluate the test-retest reliability of ACW-0 and ACW-50 under both eyes-open and eyes-closed conditions across three sessions. The intraclass correlation coefficients (ICCs) were employed to quantify the reliability of the intrinsic neural timescales. Our results showed that intrinsic neural timescales exhibited good reliability (ICC > 0.6) at the whole-brain level across different index types and eye states. Spatially, except for the right temporal region in the eyes-open condition, all other regions showed moderate-to-high ICCs. Over 60% of the electrodes demonstrated moderate-to-high intrinsic neural timescale ICCs under both eyes-open and eyes-closed conditions, with ACW-0 being more stable than ACW-50. Moreover, in the new dataset, the above results were consistently reproduced. The present study comprehensively assessed the reliability of intrinsic neural timescale under various conditions, providing robust evidence for their stability in neuroscience and psychiatry.</p>\",\"PeriodicalId\":9715,\"journal\":{\"name\":\"Cerebral cortex\",\"volume\":\"35 2\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cerebral cortex\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/cercor/bhaf034\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebral cortex","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/cercor/bhaf034","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Test-retest reliability of resting-state EEG intrinsic neural timescales.
Intrinsic neural timescales, which reflect the duration of neural information storage within local brain regions and capacity for information integration, are typically measured using autocorrelation windows (ACWs). Extraction of intrinsic neural timescales from resting-state brain activity has been extensively applied in psychiatric disease research. Given the potential of intrinsic neural timescales as a neural marker for psychiatric disorders, investigating their reliability is crucial. This study, using an open-source database, aimed to evaluate the test-retest reliability of ACW-0 and ACW-50 under both eyes-open and eyes-closed conditions across three sessions. The intraclass correlation coefficients (ICCs) were employed to quantify the reliability of the intrinsic neural timescales. Our results showed that intrinsic neural timescales exhibited good reliability (ICC > 0.6) at the whole-brain level across different index types and eye states. Spatially, except for the right temporal region in the eyes-open condition, all other regions showed moderate-to-high ICCs. Over 60% of the electrodes demonstrated moderate-to-high intrinsic neural timescale ICCs under both eyes-open and eyes-closed conditions, with ACW-0 being more stable than ACW-50. Moreover, in the new dataset, the above results were consistently reproduced. The present study comprehensively assessed the reliability of intrinsic neural timescale under various conditions, providing robust evidence for their stability in neuroscience and psychiatry.
期刊介绍:
Cerebral Cortex publishes papers on the development, organization, plasticity, and function of the cerebral cortex, including the hippocampus. Studies with clear relevance to the cerebral cortex, such as the thalamocortical relationship or cortico-subcortical interactions, are also included.
The journal is multidisciplinary and covers the large variety of modern neurobiological and neuropsychological techniques, including anatomy, biochemistry, molecular neurobiology, electrophysiology, behavior, artificial intelligence, and theoretical modeling. In addition to research articles, special features such as brief reviews, book reviews, and commentaries are included.