静息状态脑电图固有神经时间标的重测信度。

IF 2.9 2区 医学 Q2 NEUROSCIENCES
Xiaoling Tang, Shan Wang, Xinye Xu, Wenbo Luo, Mingming Zhang
{"title":"静息状态脑电图固有神经时间标的重测信度。","authors":"Xiaoling Tang, Shan Wang, Xinye Xu, Wenbo Luo, Mingming Zhang","doi":"10.1093/cercor/bhaf034","DOIUrl":null,"url":null,"abstract":"<p><p>Intrinsic neural timescales, which reflect the duration of neural information storage within local brain regions and capacity for information integration, are typically measured using autocorrelation windows (ACWs). Extraction of intrinsic neural timescales from resting-state brain activity has been extensively applied in psychiatric disease research. Given the potential of intrinsic neural timescales as a neural marker for psychiatric disorders, investigating their reliability is crucial. This study, using an open-source database, aimed to evaluate the test-retest reliability of ACW-0 and ACW-50 under both eyes-open and eyes-closed conditions across three sessions. The intraclass correlation coefficients (ICCs) were employed to quantify the reliability of the intrinsic neural timescales. Our results showed that intrinsic neural timescales exhibited good reliability (ICC > 0.6) at the whole-brain level across different index types and eye states. Spatially, except for the right temporal region in the eyes-open condition, all other regions showed moderate-to-high ICCs. Over 60% of the electrodes demonstrated moderate-to-high intrinsic neural timescale ICCs under both eyes-open and eyes-closed conditions, with ACW-0 being more stable than ACW-50. Moreover, in the new dataset, the above results were consistently reproduced. The present study comprehensively assessed the reliability of intrinsic neural timescale under various conditions, providing robust evidence for their stability in neuroscience and psychiatry.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"35 2","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Test-retest reliability of resting-state EEG intrinsic neural timescales.\",\"authors\":\"Xiaoling Tang, Shan Wang, Xinye Xu, Wenbo Luo, Mingming Zhang\",\"doi\":\"10.1093/cercor/bhaf034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Intrinsic neural timescales, which reflect the duration of neural information storage within local brain regions and capacity for information integration, are typically measured using autocorrelation windows (ACWs). Extraction of intrinsic neural timescales from resting-state brain activity has been extensively applied in psychiatric disease research. Given the potential of intrinsic neural timescales as a neural marker for psychiatric disorders, investigating their reliability is crucial. This study, using an open-source database, aimed to evaluate the test-retest reliability of ACW-0 and ACW-50 under both eyes-open and eyes-closed conditions across three sessions. The intraclass correlation coefficients (ICCs) were employed to quantify the reliability of the intrinsic neural timescales. Our results showed that intrinsic neural timescales exhibited good reliability (ICC > 0.6) at the whole-brain level across different index types and eye states. Spatially, except for the right temporal region in the eyes-open condition, all other regions showed moderate-to-high ICCs. Over 60% of the electrodes demonstrated moderate-to-high intrinsic neural timescale ICCs under both eyes-open and eyes-closed conditions, with ACW-0 being more stable than ACW-50. Moreover, in the new dataset, the above results were consistently reproduced. The present study comprehensively assessed the reliability of intrinsic neural timescale under various conditions, providing robust evidence for their stability in neuroscience and psychiatry.</p>\",\"PeriodicalId\":9715,\"journal\":{\"name\":\"Cerebral cortex\",\"volume\":\"35 2\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cerebral cortex\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/cercor/bhaf034\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebral cortex","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/cercor/bhaf034","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

固有神经时间尺度反映了神经信息在大脑局部区域存储的持续时间和信息整合的能力,通常使用自相关窗口(acw)来测量。从静息状态大脑活动中提取内在神经时间尺度已广泛应用于精神疾病研究。鉴于内在神经时间标度作为精神疾病的神经标记物的潜力,调查其可靠性至关重要。本研究采用开源数据库,旨在评估睁眼和闭眼条件下ACW-0和ACW-50的重测信度。类内相关系数(ICCs)被用来量化内在神经时间尺度的可靠性。结果表明,在不同的指数类型和眼状态下,内在神经时间尺度在全脑水平上表现出良好的可靠性(ICC > 0.6)。在空间上,除睁眼状态下右侧颞区外,其余区域均为中高icc。超过60%的电极在睁眼和闭眼条件下均表现出中高的内在神经时间尺度icc,其中ACW-0比ACW-50更稳定。此外,在新的数据集中,上述结果得到了一致的再现。本研究全面评估了内在神经时间标度在各种条件下的可靠性,为其在神经科学和精神病学中的稳定性提供了有力的证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Test-retest reliability of resting-state EEG intrinsic neural timescales.

Intrinsic neural timescales, which reflect the duration of neural information storage within local brain regions and capacity for information integration, are typically measured using autocorrelation windows (ACWs). Extraction of intrinsic neural timescales from resting-state brain activity has been extensively applied in psychiatric disease research. Given the potential of intrinsic neural timescales as a neural marker for psychiatric disorders, investigating their reliability is crucial. This study, using an open-source database, aimed to evaluate the test-retest reliability of ACW-0 and ACW-50 under both eyes-open and eyes-closed conditions across three sessions. The intraclass correlation coefficients (ICCs) were employed to quantify the reliability of the intrinsic neural timescales. Our results showed that intrinsic neural timescales exhibited good reliability (ICC > 0.6) at the whole-brain level across different index types and eye states. Spatially, except for the right temporal region in the eyes-open condition, all other regions showed moderate-to-high ICCs. Over 60% of the electrodes demonstrated moderate-to-high intrinsic neural timescale ICCs under both eyes-open and eyes-closed conditions, with ACW-0 being more stable than ACW-50. Moreover, in the new dataset, the above results were consistently reproduced. The present study comprehensively assessed the reliability of intrinsic neural timescale under various conditions, providing robust evidence for their stability in neuroscience and psychiatry.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cerebral cortex
Cerebral cortex 医学-神经科学
CiteScore
6.30
自引率
8.10%
发文量
510
审稿时长
2 months
期刊介绍: Cerebral Cortex publishes papers on the development, organization, plasticity, and function of the cerebral cortex, including the hippocampus. Studies with clear relevance to the cerebral cortex, such as the thalamocortical relationship or cortico-subcortical interactions, are also included. The journal is multidisciplinary and covers the large variety of modern neurobiological and neuropsychological techniques, including anatomy, biochemistry, molecular neurobiology, electrophysiology, behavior, artificial intelligence, and theoretical modeling. In addition to research articles, special features such as brief reviews, book reviews, and commentaries are included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信