用于上臂康复的长短期记忆肌电控制自适应可穿戴机器人外骨骼。

IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
S M U S Samarakoon, H M K K M B Herath, S L P Yasakethu, Dileepa Fernando, Nuwan Madusanka, Myunggi Yi, Byeong-Il Lee
{"title":"用于上臂康复的长短期记忆肌电控制自适应可穿戴机器人外骨骼。","authors":"S M U S Samarakoon, H M K K M B Herath, S L P Yasakethu, Dileepa Fernando, Nuwan Madusanka, Myunggi Yi, Byeong-Il Lee","doi":"10.3390/biomimetics10020106","DOIUrl":null,"url":null,"abstract":"<p><p>Restoring strength, function, and mobility following an illness, accident, or surgery is the primary goal of upper arm rehabilitation. Exoskeletons offer adaptable support, enhancing patient engagement and accelerating recovery. This work proposes an adjustable, wearable robotic exoskeleton powered by electromyography (EMG) data for upper arm rehabilitation. Three activation levels-low, medium, and high-were applied to the EMG data to forecast the Pulse Width Modulation (PWM) based on the range of motion (ROM) angle. Conventional machine learning (ML) models, including K-Nearest Neighbor Regression (K-NNR), Support Vector Regression (SVR), and Random Forest Regression (RFR), were compared with neural network approaches, including Gated Recurrent Units (GRUs) and Long Short-Term Memory (LSTM) to determine the best ML model for the ROM angle prediction. The LSTM model emerged as the best predictor with a high accuracy of 0.96. The system achieved 0.89 accuracy in exoskeleton control and 0.85 accuracy in signal categorization. Additionally, the proposed exoskeleton demonstrated a 0.97 performance in ROM correction compared to conventional methods (<i>p</i> = 0.097). These findings highlight the potential of EMG-based, LSTM-enabled exoskeleton systems to deliver accurate and adaptive upper arm rehabilitation, particularly for senior citizens, by providing personalized and effective support.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11852623/pdf/","citationCount":"0","resultStr":"{\"title\":\"Long Short-Term Memory-Enabled Electromyography-Controlled Adaptive Wearable Robotic Exoskeleton for Upper Arm Rehabilitation.\",\"authors\":\"S M U S Samarakoon, H M K K M B Herath, S L P Yasakethu, Dileepa Fernando, Nuwan Madusanka, Myunggi Yi, Byeong-Il Lee\",\"doi\":\"10.3390/biomimetics10020106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Restoring strength, function, and mobility following an illness, accident, or surgery is the primary goal of upper arm rehabilitation. Exoskeletons offer adaptable support, enhancing patient engagement and accelerating recovery. This work proposes an adjustable, wearable robotic exoskeleton powered by electromyography (EMG) data for upper arm rehabilitation. Three activation levels-low, medium, and high-were applied to the EMG data to forecast the Pulse Width Modulation (PWM) based on the range of motion (ROM) angle. Conventional machine learning (ML) models, including K-Nearest Neighbor Regression (K-NNR), Support Vector Regression (SVR), and Random Forest Regression (RFR), were compared with neural network approaches, including Gated Recurrent Units (GRUs) and Long Short-Term Memory (LSTM) to determine the best ML model for the ROM angle prediction. The LSTM model emerged as the best predictor with a high accuracy of 0.96. The system achieved 0.89 accuracy in exoskeleton control and 0.85 accuracy in signal categorization. Additionally, the proposed exoskeleton demonstrated a 0.97 performance in ROM correction compared to conventional methods (<i>p</i> = 0.097). These findings highlight the potential of EMG-based, LSTM-enabled exoskeleton systems to deliver accurate and adaptive upper arm rehabilitation, particularly for senior citizens, by providing personalized and effective support.</p>\",\"PeriodicalId\":8907,\"journal\":{\"name\":\"Biomimetics\",\"volume\":\"10 2\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11852623/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomimetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/biomimetics10020106\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10020106","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在疾病、事故或手术后恢复力量、功能和活动能力是上臂康复的主要目标。外骨骼提供适应性支持,增强患者参与和加速恢复。这项工作提出了一种可调节的、可穿戴的机器人外骨骼,由肌电图(EMG)数据提供动力,用于上臂康复。将低、中、高三个激活水平应用于肌电数据,预测基于运动范围(ROM)角度的脉宽调制(PWM)。将传统机器学习(ML)模型(包括k -最近邻回归(K-NNR)、支持向量回归(SVR)和随机森林回归(RFR))与神经网络方法(包括门控循环单元(gru)和长短期记忆(LSTM))进行比较,以确定用于ROM角度预测的最佳ML模型。LSTM模型的预测精度为0.96,是最佳的预测因子。该系统外骨骼控制精度为0.89,信号分类精度为0.85。此外,与传统方法相比,外骨骼在ROM校正方面的性能为0.97 (p = 0.097)。这些发现强调了基于肌电图、lstm的外骨骼系统的潜力,通过提供个性化和有效的支持,提供准确和适应性的上臂康复,特别是对老年人。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Long Short-Term Memory-Enabled Electromyography-Controlled Adaptive Wearable Robotic Exoskeleton for Upper Arm Rehabilitation.

Restoring strength, function, and mobility following an illness, accident, or surgery is the primary goal of upper arm rehabilitation. Exoskeletons offer adaptable support, enhancing patient engagement and accelerating recovery. This work proposes an adjustable, wearable robotic exoskeleton powered by electromyography (EMG) data for upper arm rehabilitation. Three activation levels-low, medium, and high-were applied to the EMG data to forecast the Pulse Width Modulation (PWM) based on the range of motion (ROM) angle. Conventional machine learning (ML) models, including K-Nearest Neighbor Regression (K-NNR), Support Vector Regression (SVR), and Random Forest Regression (RFR), were compared with neural network approaches, including Gated Recurrent Units (GRUs) and Long Short-Term Memory (LSTM) to determine the best ML model for the ROM angle prediction. The LSTM model emerged as the best predictor with a high accuracy of 0.96. The system achieved 0.89 accuracy in exoskeleton control and 0.85 accuracy in signal categorization. Additionally, the proposed exoskeleton demonstrated a 0.97 performance in ROM correction compared to conventional methods (p = 0.097). These findings highlight the potential of EMG-based, LSTM-enabled exoskeleton systems to deliver accurate and adaptive upper arm rehabilitation, particularly for senior citizens, by providing personalized and effective support.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信