α-山竹苷衍生物作为α-葡萄糖苷酶抑制剂的机制研究。

IF 3.9 2区 化学 Q2 CHEMISTRY, APPLIED
Kamonpan Sanachai, Supakarn Chamni, Bodee Nutho, Saranyu Khammuang, Juthamat Ratha, Kiattawee Choowongkomon, Ploenthip Puthongking
{"title":"α-山竹苷衍生物作为α-葡萄糖苷酶抑制剂的机制研究。","authors":"Kamonpan Sanachai, Supakarn Chamni, Bodee Nutho, Saranyu Khammuang, Juthamat Ratha, Kiattawee Choowongkomon, Ploenthip Puthongking","doi":"10.1007/s11030-025-11141-6","DOIUrl":null,"url":null,"abstract":"<p><p>α-Glucosidase inhibitors (AGIs) are pharmacological agents commonly used to manage postprandial hyperglycemia associated with type 2 diabetes mellitus (T2DM). Developing novel, potent AGIs remains a significant area of research. In this study, we investigated a series of derivatives of the natural product from α-mangostin as potential AGIs. A combined experimental and computational approach was employed to characterize promising compounds with potent α-glucosidase inhibitory activity. We found that α-mangostin (AM) and its derivatives (AM1 - 3) exhibited micromolar range α-glucosidase inhibition (IC<sub>50</sub> ranging from 15.14 to 67.81 µM), surpassing the known drug acarbose (IC<sub>50</sub> of 197.09 µM). Among the derivatives, AM1 exhibited the most promising α-glucosidase inhibition, displaying competitive inhibition kinetics with a K<sub>i</sub> value of 47.04 µM. Molecular docking and molecular dynamics (MD) simulations provided mechanistic insights into the binding interactions between AM1 and the α-glucosidase active site. AM1 was observed to form hydrogen bonds and hydrophobic interactions with key amino acid residues within the enzyme's active site. The introduction of amine groups in compound AM1 enhanced activity compared to AM, the parent compound. This study highlights the potential of α-mangostin derivatives as potent AGIs. The identified lead compound, AM1, warrants further investigation to assess its efficacy and safety in managing T2DM.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanistic study of α-mangostin derivatives as potent α-glucosidase inhibitors.\",\"authors\":\"Kamonpan Sanachai, Supakarn Chamni, Bodee Nutho, Saranyu Khammuang, Juthamat Ratha, Kiattawee Choowongkomon, Ploenthip Puthongking\",\"doi\":\"10.1007/s11030-025-11141-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>α-Glucosidase inhibitors (AGIs) are pharmacological agents commonly used to manage postprandial hyperglycemia associated with type 2 diabetes mellitus (T2DM). Developing novel, potent AGIs remains a significant area of research. In this study, we investigated a series of derivatives of the natural product from α-mangostin as potential AGIs. A combined experimental and computational approach was employed to characterize promising compounds with potent α-glucosidase inhibitory activity. We found that α-mangostin (AM) and its derivatives (AM1 - 3) exhibited micromolar range α-glucosidase inhibition (IC<sub>50</sub> ranging from 15.14 to 67.81 µM), surpassing the known drug acarbose (IC<sub>50</sub> of 197.09 µM). Among the derivatives, AM1 exhibited the most promising α-glucosidase inhibition, displaying competitive inhibition kinetics with a K<sub>i</sub> value of 47.04 µM. Molecular docking and molecular dynamics (MD) simulations provided mechanistic insights into the binding interactions between AM1 and the α-glucosidase active site. AM1 was observed to form hydrogen bonds and hydrophobic interactions with key amino acid residues within the enzyme's active site. The introduction of amine groups in compound AM1 enhanced activity compared to AM, the parent compound. This study highlights the potential of α-mangostin derivatives as potent AGIs. The identified lead compound, AM1, warrants further investigation to assess its efficacy and safety in managing T2DM.</p>\",\"PeriodicalId\":708,\"journal\":{\"name\":\"Molecular Diversity\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Diversity\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s11030-025-11141-6\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-025-11141-6","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

α-葡萄糖苷酶抑制剂(AGIs)是一种常用的药物,用于治疗2型糖尿病(T2DM)相关的餐后高血糖。开发新型、有效的AGIs仍然是一个重要的研究领域。在本研究中,我们研究了α-山竹苷天然产物的一系列衍生物作为潜在的AGIs。采用实验和计算相结合的方法对具有α-葡萄糖苷酶抑制活性的化合物进行了表征。研究发现,α-山竹苷(AM)及其衍生物AM1 - 3对α-葡萄糖苷酶的抑制作用在微摩尔范围内(IC50为15.14 ~ 67.81µM),超过了已知药物阿卡波糖(IC50为197.09µM)。其中AM1对α-葡萄糖苷酶的抑制效果最好,Ki值为47.04µM。分子对接和分子动力学(MD)模拟为AM1与α-葡萄糖苷酶活性位点之间的结合相互作用提供了机制见解。观察到AM1与酶活性位点内的关键氨基酸残基形成氢键和疏水相互作用。与母体化合物AM相比,化合物AM1中胺基的引入增强了活性。本研究强调了α-山竹苷衍生物作为强效AGIs的潜力。确定的先导化合物AM1值得进一步研究,以评估其治疗T2DM的有效性和安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanistic study of α-mangostin derivatives as potent α-glucosidase inhibitors.

α-Glucosidase inhibitors (AGIs) are pharmacological agents commonly used to manage postprandial hyperglycemia associated with type 2 diabetes mellitus (T2DM). Developing novel, potent AGIs remains a significant area of research. In this study, we investigated a series of derivatives of the natural product from α-mangostin as potential AGIs. A combined experimental and computational approach was employed to characterize promising compounds with potent α-glucosidase inhibitory activity. We found that α-mangostin (AM) and its derivatives (AM1 - 3) exhibited micromolar range α-glucosidase inhibition (IC50 ranging from 15.14 to 67.81 µM), surpassing the known drug acarbose (IC50 of 197.09 µM). Among the derivatives, AM1 exhibited the most promising α-glucosidase inhibition, displaying competitive inhibition kinetics with a Ki value of 47.04 µM. Molecular docking and molecular dynamics (MD) simulations provided mechanistic insights into the binding interactions between AM1 and the α-glucosidase active site. AM1 was observed to form hydrogen bonds and hydrophobic interactions with key amino acid residues within the enzyme's active site. The introduction of amine groups in compound AM1 enhanced activity compared to AM, the parent compound. This study highlights the potential of α-mangostin derivatives as potent AGIs. The identified lead compound, AM1, warrants further investigation to assess its efficacy and safety in managing T2DM.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Diversity
Molecular Diversity 化学-化学综合
CiteScore
7.30
自引率
7.90%
发文量
219
审稿时长
2.7 months
期刊介绍: Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including: combinatorial chemistry and parallel synthesis; small molecule libraries; microwave synthesis; flow synthesis; fluorous synthesis; diversity oriented synthesis (DOS); nanoreactors; click chemistry; multiplex technologies; fragment- and ligand-based design; structure/function/SAR; computational chemistry and molecular design; chemoinformatics; screening techniques and screening interfaces; analytical and purification methods; robotics, automation and miniaturization; targeted libraries; display libraries; peptides and peptoids; proteins; oligonucleotides; carbohydrates; natural diversity; new methods of library formulation and deconvolution; directed evolution, origin of life and recombination; search techniques, landscapes, random chemistry and more;
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信