Zn4Sb3薄膜中Sn掺杂的优化:对工艺和电性能的影响。

IF 6.6 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-02-25 DOI:10.1002/cssc.202402690
Cheng-Lung Chen, Bo-Chen Tang, Sheng-Chi Chen, Chao-Kuang Wen, Yin-Hung Chen, Assayidatul Laila Nor Hairin
{"title":"Zn4Sb3薄膜中Sn掺杂的优化:对工艺和电性能的影响。","authors":"Cheng-Lung Chen,&nbsp;Bo-Chen Tang,&nbsp;Sheng-Chi Chen,&nbsp;Chao-Kuang Wen,&nbsp;Yin-Hung Chen,&nbsp;Assayidatul Laila Nor Hairin","doi":"10.1002/cssc.202402690","DOIUrl":null,"url":null,"abstract":"<p><i>β</i>-Zn<sub>4</sub>Sb<sub>3</sub> is a promising thermoelectric material due to its environmental friendliness and suitability for mid-temperature applications which aligns with the development of renewable energy. However, maintaining its pure <i>β</i>-phase during fabrication remains a significant challenge, as phase instabilities often degrade its thermoelectric performance. Here, we demonstrate the successful optimization of <i>β</i>-Zn<sub>4</sub>Sb<sub>3</sub> thin films through controlled Sn doping using ion beam-assisted deposition. By precisely regulating the Sn concentration at 0.97 %, the <i>β</i>-Zn<sub>4</sub>Sb<sub>3</sub> phase is preserved, resulting in a maximum power factor of 1.4 mW m<sup>−1</sup> K<sup>−2</sup> at 573 K—a 60 % improvement over undoped films. Comprehensive analyses reveal that dilute Sn doping enhances carrier mobility and structural stability while avoiding detrimental phase transitions to ZnSb. These findings highlight the importance of precise doping and processing control in stabilizing the β-phase structure. This work provides a new pathway for fabricating high-quality thermoelectric thin films, offering valuable insights into the development of scalable, efficient energy harvesting technologies.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":"18 11","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing Sn Doping in Zn4Sb3 Thin Films: Insights into Processing and Electrical Performance\",\"authors\":\"Cheng-Lung Chen,&nbsp;Bo-Chen Tang,&nbsp;Sheng-Chi Chen,&nbsp;Chao-Kuang Wen,&nbsp;Yin-Hung Chen,&nbsp;Assayidatul Laila Nor Hairin\",\"doi\":\"10.1002/cssc.202402690\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><i>β</i>-Zn<sub>4</sub>Sb<sub>3</sub> is a promising thermoelectric material due to its environmental friendliness and suitability for mid-temperature applications which aligns with the development of renewable energy. However, maintaining its pure <i>β</i>-phase during fabrication remains a significant challenge, as phase instabilities often degrade its thermoelectric performance. Here, we demonstrate the successful optimization of <i>β</i>-Zn<sub>4</sub>Sb<sub>3</sub> thin films through controlled Sn doping using ion beam-assisted deposition. By precisely regulating the Sn concentration at 0.97 %, the <i>β</i>-Zn<sub>4</sub>Sb<sub>3</sub> phase is preserved, resulting in a maximum power factor of 1.4 mW m<sup>−1</sup> K<sup>−2</sup> at 573 K—a 60 % improvement over undoped films. Comprehensive analyses reveal that dilute Sn doping enhances carrier mobility and structural stability while avoiding detrimental phase transitions to ZnSb. These findings highlight the importance of precise doping and processing control in stabilizing the β-phase structure. This work provides a new pathway for fabricating high-quality thermoelectric thin films, offering valuable insights into the development of scalable, efficient energy harvesting technologies.</p>\",\"PeriodicalId\":149,\"journal\":{\"name\":\"ChemSusChem\",\"volume\":\"18 11\",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cssc.202402690\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cssc.202402690","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于β-Zn4Sb3具有环境友好性和适合中温应用的特点,是一种很有前途的热电材料。然而,在制造过程中保持其纯β相仍然是一个重大挑战,因为相不稳定性通常会降低其热电性能。在这里,我们证明了通过离子束辅助沉积控制锡掺杂,成功地优化了β-Zn4Sb3薄膜。通过精确地将锡的浓度控制在0.97%,β-Zn4Sb3相得以保存,从而使其在573 K时的最大功率因子达到1.4 mW m(⁻¹K⁻²),比未掺杂的薄膜提高了60%。综合分析表明,稀锡掺杂提高了载流子迁移率和结构稳定性,同时避免了对ZnSb的有害相变。这些发现强调了精确掺杂和工艺控制在稳定β相结构中的重要性。这项工作为制造高质量的热电薄膜提供了一条新的途径,为开发可扩展的、高效的能量收集技术提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Optimizing Sn Doping in Zn4Sb3 Thin Films: Insights into Processing and Electrical Performance

Optimizing Sn Doping in Zn4Sb3 Thin Films: Insights into Processing and Electrical Performance

Optimizing Sn Doping in Zn4Sb3 Thin Films: Insights into Processing and Electrical Performance

Optimizing Sn Doping in Zn4Sb3 Thin Films: Insights into Processing and Electrical Performance

β-Zn4Sb3 is a promising thermoelectric material due to its environmental friendliness and suitability for mid-temperature applications which aligns with the development of renewable energy. However, maintaining its pure β-phase during fabrication remains a significant challenge, as phase instabilities often degrade its thermoelectric performance. Here, we demonstrate the successful optimization of β-Zn4Sb3 thin films through controlled Sn doping using ion beam-assisted deposition. By precisely regulating the Sn concentration at 0.97 %, the β-Zn4Sb3 phase is preserved, resulting in a maximum power factor of 1.4 mW m−1 K−2 at 573 K—a 60 % improvement over undoped films. Comprehensive analyses reveal that dilute Sn doping enhances carrier mobility and structural stability while avoiding detrimental phase transitions to ZnSb. These findings highlight the importance of precise doping and processing control in stabilizing the β-phase structure. This work provides a new pathway for fabricating high-quality thermoelectric thin films, offering valuable insights into the development of scalable, efficient energy harvesting technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信