Mingzheng Sun, Qi Li, Jie Pan, Hongwei Wei, Chong Liu, Xin Xu, Yangang Li
{"title":"从数字城市中提取 POI:使用大型语言模型的工程探索","authors":"Mingzheng Sun, Qi Li, Jie Pan, Hongwei Wei, Chong Liu, Xin Xu, Yangang Li","doi":"10.1111/exsy.70001","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Point-of-interest (POI) extraction aims to extract text POIs from real-world data. Existing POI methods, such as social media-based user generating and web crawling, either require massive human resources or cannot guarantee integrity and reliability. Therefore, in this paper, an end-to-end POI extraction framework based on digital city is proposed. It is built of digital models, textures, tiles and other digital assets collected by aircraft. The extraction process for POIs consists of segmenting it into four sequential stages: collecting, segmentation, recognition and cleaning, each enhanced through fine-tuning on a proposed specialised digital scene dataset or via the development of tailored algorithms. Specifically, in the last stage, the application of large language model (LLM) is explored in the POI data cleaning field. By testing several LLMs of different scales using diverse chain-of-thought (CoT) strategies, the relatively optimal prompt scheme for different LLMs is identified regarding noise handling, formatted output and overall cleaning capability. Ultimately, POIs extracted through the proposed methodology exhibit superior quality and accuracy, surpassing the comprehensiveness of existing public commercial POI datasets, with the <i>F</i>1-score increased by 19.6%, 21.1% and 23.8% on Amap, Baidu and Google POI datasets, respectively.</p>\n </div>","PeriodicalId":51053,"journal":{"name":"Expert Systems","volume":"42 4","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"POI Extraction From Digital City: An Engineering Exploration With Large-Language Models\",\"authors\":\"Mingzheng Sun, Qi Li, Jie Pan, Hongwei Wei, Chong Liu, Xin Xu, Yangang Li\",\"doi\":\"10.1111/exsy.70001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Point-of-interest (POI) extraction aims to extract text POIs from real-world data. Existing POI methods, such as social media-based user generating and web crawling, either require massive human resources or cannot guarantee integrity and reliability. Therefore, in this paper, an end-to-end POI extraction framework based on digital city is proposed. It is built of digital models, textures, tiles and other digital assets collected by aircraft. The extraction process for POIs consists of segmenting it into four sequential stages: collecting, segmentation, recognition and cleaning, each enhanced through fine-tuning on a proposed specialised digital scene dataset or via the development of tailored algorithms. Specifically, in the last stage, the application of large language model (LLM) is explored in the POI data cleaning field. By testing several LLMs of different scales using diverse chain-of-thought (CoT) strategies, the relatively optimal prompt scheme for different LLMs is identified regarding noise handling, formatted output and overall cleaning capability. Ultimately, POIs extracted through the proposed methodology exhibit superior quality and accuracy, surpassing the comprehensiveness of existing public commercial POI datasets, with the <i>F</i>1-score increased by 19.6%, 21.1% and 23.8% on Amap, Baidu and Google POI datasets, respectively.</p>\\n </div>\",\"PeriodicalId\":51053,\"journal\":{\"name\":\"Expert Systems\",\"volume\":\"42 4\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/exsy.70001\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/exsy.70001","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
POI Extraction From Digital City: An Engineering Exploration With Large-Language Models
Point-of-interest (POI) extraction aims to extract text POIs from real-world data. Existing POI methods, such as social media-based user generating and web crawling, either require massive human resources or cannot guarantee integrity and reliability. Therefore, in this paper, an end-to-end POI extraction framework based on digital city is proposed. It is built of digital models, textures, tiles and other digital assets collected by aircraft. The extraction process for POIs consists of segmenting it into four sequential stages: collecting, segmentation, recognition and cleaning, each enhanced through fine-tuning on a proposed specialised digital scene dataset or via the development of tailored algorithms. Specifically, in the last stage, the application of large language model (LLM) is explored in the POI data cleaning field. By testing several LLMs of different scales using diverse chain-of-thought (CoT) strategies, the relatively optimal prompt scheme for different LLMs is identified regarding noise handling, formatted output and overall cleaning capability. Ultimately, POIs extracted through the proposed methodology exhibit superior quality and accuracy, surpassing the comprehensiveness of existing public commercial POI datasets, with the F1-score increased by 19.6%, 21.1% and 23.8% on Amap, Baidu and Google POI datasets, respectively.
期刊介绍:
Expert Systems: The Journal of Knowledge Engineering publishes papers dealing with all aspects of knowledge engineering, including individual methods and techniques in knowledge acquisition and representation, and their application in the construction of systems – including expert systems – based thereon. Detailed scientific evaluation is an essential part of any paper.
As well as traditional application areas, such as Software and Requirements Engineering, Human-Computer Interaction, and Artificial Intelligence, we are aiming at the new and growing markets for these technologies, such as Business, Economy, Market Research, and Medical and Health Care. The shift towards this new focus will be marked by a series of special issues covering hot and emergent topics.