QDND:Ad Hoc 毫米波无线网络中基于法定人数的能效感知定向邻居发现功能

IF 1.7 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Tingpei Huang, Bairen Zhang, Tiantian Zhang, Jianhang Liu, Shibao Li
{"title":"QDND:Ad Hoc 毫米波无线网络中基于法定人数的能效感知定向邻居发现功能","authors":"Tingpei Huang,&nbsp;Bairen Zhang,&nbsp;Tiantian Zhang,&nbsp;Jianhang Liu,&nbsp;Shibao Li","doi":"10.1002/dac.70005","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In ad hoc millimeter wave (mmWave) wireless networks, nodes typically use directional antennas to cope with their high path loss problem. Directional neighbor discovery is a crucial technology in the first step of establishing the mmWave communication network. However, directional antennas introduce new challenges to the neighbor discovery: beam alignment and heterogeneous operating mode problems. Meanwhile, the continuous neighbor discovery process leads to significant energy consumption. To solve the above challenges, this paper introduces a directional neighbor discovery algorithm QDND with an adjustable duty cycle based on the Grid Quorum system. Firstly, we design a duty cycle adaptive control algorithm to avoid continuous neighbor discovery processes. Secondly, we propose a sector scanning algorithm to guarantee the beam alignment. Finally, we design an operating mode scheduling algorithm to enable two neighbors to work in different operating modes simultaneously. We conduct extensive simulations under different network scenarios to validate the performance of the QDND. The numerical analysis and simulation results show that QDND outperforms existing directional neighbor discovery algorithms in terms of ATTD and MTTD in different numbers of nodes, beamwidths, and duty cycles.</p>\n </div>","PeriodicalId":13946,"journal":{"name":"International Journal of Communication Systems","volume":"38 6","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"QDND: Quorum-Based Energy Efficiency Aware Directional Neighbor Discovery in Ad Hoc Millimeter Wave Wireless Networks\",\"authors\":\"Tingpei Huang,&nbsp;Bairen Zhang,&nbsp;Tiantian Zhang,&nbsp;Jianhang Liu,&nbsp;Shibao Li\",\"doi\":\"10.1002/dac.70005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>In ad hoc millimeter wave (mmWave) wireless networks, nodes typically use directional antennas to cope with their high path loss problem. Directional neighbor discovery is a crucial technology in the first step of establishing the mmWave communication network. However, directional antennas introduce new challenges to the neighbor discovery: beam alignment and heterogeneous operating mode problems. Meanwhile, the continuous neighbor discovery process leads to significant energy consumption. To solve the above challenges, this paper introduces a directional neighbor discovery algorithm QDND with an adjustable duty cycle based on the Grid Quorum system. Firstly, we design a duty cycle adaptive control algorithm to avoid continuous neighbor discovery processes. Secondly, we propose a sector scanning algorithm to guarantee the beam alignment. Finally, we design an operating mode scheduling algorithm to enable two neighbors to work in different operating modes simultaneously. We conduct extensive simulations under different network scenarios to validate the performance of the QDND. The numerical analysis and simulation results show that QDND outperforms existing directional neighbor discovery algorithms in terms of ATTD and MTTD in different numbers of nodes, beamwidths, and duty cycles.</p>\\n </div>\",\"PeriodicalId\":13946,\"journal\":{\"name\":\"International Journal of Communication Systems\",\"volume\":\"38 6\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Communication Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/dac.70005\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Communication Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dac.70005","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在自组织毫米波(mmWave)无线网络中,节点通常使用定向天线来应对其高路径损耗问题。定向邻居发现是建立毫米波通信网络的关键技术。然而,定向天线给邻居发现带来了新的挑战:波束对准和异构工作模式问题。同时,不断的邻居发现过程会导致大量的能量消耗。为了解决上述问题,本文提出了一种基于网格仲裁系统的可调占空比定向邻居发现算法QDND。首先,我们设计了一个占空比自适应控制算法,以避免连续的邻居发现过程。其次,提出了一种扇形扫描算法来保证波束的对准。最后,我们设计了一种工作模式调度算法,使两个邻居同时在不同的工作模式下工作。我们在不同的网络场景下进行了大量的仿真,以验证QDND的性能。数值分析和仿真结果表明,在不同的节点数、波束宽度和占空比下,QDND在ATTD和MTTD方面都优于现有的定向邻居发现算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

QDND: Quorum-Based Energy Efficiency Aware Directional Neighbor Discovery in Ad Hoc Millimeter Wave Wireless Networks

QDND: Quorum-Based Energy Efficiency Aware Directional Neighbor Discovery in Ad Hoc Millimeter Wave Wireless Networks

In ad hoc millimeter wave (mmWave) wireless networks, nodes typically use directional antennas to cope with their high path loss problem. Directional neighbor discovery is a crucial technology in the first step of establishing the mmWave communication network. However, directional antennas introduce new challenges to the neighbor discovery: beam alignment and heterogeneous operating mode problems. Meanwhile, the continuous neighbor discovery process leads to significant energy consumption. To solve the above challenges, this paper introduces a directional neighbor discovery algorithm QDND with an adjustable duty cycle based on the Grid Quorum system. Firstly, we design a duty cycle adaptive control algorithm to avoid continuous neighbor discovery processes. Secondly, we propose a sector scanning algorithm to guarantee the beam alignment. Finally, we design an operating mode scheduling algorithm to enable two neighbors to work in different operating modes simultaneously. We conduct extensive simulations under different network scenarios to validate the performance of the QDND. The numerical analysis and simulation results show that QDND outperforms existing directional neighbor discovery algorithms in terms of ATTD and MTTD in different numbers of nodes, beamwidths, and duty cycles.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
9.50%
发文量
323
审稿时长
7.9 months
期刊介绍: The International Journal of Communication Systems provides a forum for R&D, open to researchers from all types of institutions and organisations worldwide, aimed at the increasingly important area of communication technology. The Journal''s emphasis is particularly on the issues impacting behaviour at the system, service and management levels. Published twelve times a year, it provides coverage of advances that have a significant potential to impact the immense technical and commercial opportunities in the communications sector. The International Journal of Communication Systems strives to select a balance of contributions that promotes technical innovation allied to practical relevance across the range of system types and issues. The Journal addresses both public communication systems (Telecommunication, mobile, Internet, and Cable TV) and private systems (Intranets, enterprise networks, LANs, MANs, WANs). The following key areas and issues are regularly covered: -Transmission/Switching/Distribution technologies (ATM, SDH, TCP/IP, routers, DSL, cable modems, VoD, VoIP, WDM, etc.) -System control, network/service management -Network and Internet protocols and standards -Client-server, distributed and Web-based communication systems -Broadband and multimedia systems and applications, with a focus on increased service variety and interactivity -Trials of advanced systems and services; their implementation and evaluation -Novel concepts and improvements in technique; their theoretical basis and performance analysis using measurement/testing, modelling and simulation -Performance evaluation issues and methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信