外代数视域下的广义特征向量-特征值恒等式

IF 1.1 2区 数学 Q2 MATHEMATICS, APPLIED
Małgorzata Stawiska
{"title":"外代数视域下的广义特征向量-特征值恒等式","authors":"Małgorzata Stawiska","doi":"10.1007/s00006-025-01375-w","DOIUrl":null,"url":null,"abstract":"<div><p>We consider square matrices over <span>\\(\\mathbb {C}\\)</span> satisfying an identity relating their eigenvalues and the corresponding eigenvectors re-proved and discussed by Denton, Parker, Tao and Zhang, called the eigenvector-eigenvalue identity. We prove that for an eigenvalue <span>\\(\\lambda \\)</span> of a given matrix, the identity holds if and only if the geometric multiplicity of <span>\\(\\lambda \\)</span> equals its algebraic multiplicity. We do not make any other assumptions on the matrix and allow the multiplicity of the eigenvalue to be greater than 1, which provides a substantial generalization of the identity. In the proof, we use exterior algebra, particularly the properties of higher adjugates of a matrix.</p></div>","PeriodicalId":7330,"journal":{"name":"Advances in Applied Clifford Algebras","volume":"35 2","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Generalized Eigenvector–Eigenvalue Identity from the Viewpoint of Exterior Algebra\",\"authors\":\"Małgorzata Stawiska\",\"doi\":\"10.1007/s00006-025-01375-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider square matrices over <span>\\\\(\\\\mathbb {C}\\\\)</span> satisfying an identity relating their eigenvalues and the corresponding eigenvectors re-proved and discussed by Denton, Parker, Tao and Zhang, called the eigenvector-eigenvalue identity. We prove that for an eigenvalue <span>\\\\(\\\\lambda \\\\)</span> of a given matrix, the identity holds if and only if the geometric multiplicity of <span>\\\\(\\\\lambda \\\\)</span> equals its algebraic multiplicity. We do not make any other assumptions on the matrix and allow the multiplicity of the eigenvalue to be greater than 1, which provides a substantial generalization of the identity. In the proof, we use exterior algebra, particularly the properties of higher adjugates of a matrix.</p></div>\",\"PeriodicalId\":7330,\"journal\":{\"name\":\"Advances in Applied Clifford Algebras\",\"volume\":\"35 2\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Clifford Algebras\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00006-025-01375-w\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Clifford Algebras","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00006-025-01375-w","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑\(\mathbb {C}\)上的方阵满足一个由Denton, Parker, Tao和Zhang重新证明和讨论的关于它们的特征值和相应的特征向量的恒等式,称为特征向量-特征值恒等式。证明了对于给定矩阵的特征值\(\lambda \),当且仅当\(\lambda \)的几何多重性等于其代数多重性时恒等式成立。我们没有对矩阵做任何其他假设,并且允许特征值的多重性大于1,这提供了恒等式的实质性泛化。在证明中,我们使用了外代数,特别是矩阵的高共轭的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Generalized Eigenvector–Eigenvalue Identity from the Viewpoint of Exterior Algebra

We consider square matrices over \(\mathbb {C}\) satisfying an identity relating their eigenvalues and the corresponding eigenvectors re-proved and discussed by Denton, Parker, Tao and Zhang, called the eigenvector-eigenvalue identity. We prove that for an eigenvalue \(\lambda \) of a given matrix, the identity holds if and only if the geometric multiplicity of \(\lambda \) equals its algebraic multiplicity. We do not make any other assumptions on the matrix and allow the multiplicity of the eigenvalue to be greater than 1, which provides a substantial generalization of the identity. In the proof, we use exterior algebra, particularly the properties of higher adjugates of a matrix.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Applied Clifford Algebras
Advances in Applied Clifford Algebras 数学-物理:数学物理
CiteScore
2.20
自引率
13.30%
发文量
56
审稿时长
3 months
期刊介绍: Advances in Applied Clifford Algebras (AACA) publishes high-quality peer-reviewed research papers as well as expository and survey articles in the area of Clifford algebras and their applications to other branches of mathematics, physics, engineering, and related fields. The journal ensures rapid publication and is organized in six sections: Analysis, Differential Geometry and Dirac Operators, Mathematical Structures, Theoretical and Mathematical Physics, Applications, and Book Reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信