阿穆尔河漫滩土壤中锕系元素的年代序列

IF 0.7 4区 地球科学 Q4 GEOCHEMISTRY & GEOPHYSICS
A. V. Martynov
{"title":"阿穆尔河漫滩土壤中锕系元素的年代序列","authors":"A. V. Martynov","doi":"10.1134/S0016702924700848","DOIUrl":null,"url":null,"abstract":"<p>For the first time, a study was conducted at the Russian Far East to assess the rate of accumulation of gross and mobile forms of actinides (U and Th) in a 5000-year-old soil chronosequence embedded within the floodplain of the middle reaches of the Amur River. The relationships between actinides and the properties of alluvial and residual alluvial soils are characterized using regression models. It was found that during the evolution, the content of the gross form of actinides in the soils of the automorphic series increased from 1 to 2 mg/kg for U and from 4 to 10 mg/kg for Th. In the soils of the hydromorphic series, the increase over a shorter time period (2600 years) was from 1 to 3 mg/kg for U and from 4 to 12 mg/kg for Th. The content of the mobile U form in automorphic and hydromorphic soils increased on average from 0.1 to 0.4 mg/kg, and that of Th, from 0.02 to 0.2 mg/kg. In the automorphic soils, the accumulation of U is observed as long as the floodplain is regularly flooded, while Th continues to accumulate even after the floodplain leaves the flood zone. In the hydromorphic soils, the accumulation of actinides continues over the entire chronological range. The results obtained show that the main soil properties determining the accumulation of actinides in soils are the content of clay minerals and iron oxides. The intake of actinides into the soils of the Amur River floodplain occurs mainly due to the weathering of melanocratic granitoid minerals in the alluvium. The mobilization of actinides is affected by pH in automorphic soils and Eh in hydromorphic soils.</p>","PeriodicalId":12781,"journal":{"name":"Geochemistry International","volume":"63 1","pages":"96 - 109"},"PeriodicalIF":0.7000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Actinides in the Soil Chronosequence of the Amur River Floodplain\",\"authors\":\"A. V. Martynov\",\"doi\":\"10.1134/S0016702924700848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For the first time, a study was conducted at the Russian Far East to assess the rate of accumulation of gross and mobile forms of actinides (U and Th) in a 5000-year-old soil chronosequence embedded within the floodplain of the middle reaches of the Amur River. The relationships between actinides and the properties of alluvial and residual alluvial soils are characterized using regression models. It was found that during the evolution, the content of the gross form of actinides in the soils of the automorphic series increased from 1 to 2 mg/kg for U and from 4 to 10 mg/kg for Th. In the soils of the hydromorphic series, the increase over a shorter time period (2600 years) was from 1 to 3 mg/kg for U and from 4 to 12 mg/kg for Th. The content of the mobile U form in automorphic and hydromorphic soils increased on average from 0.1 to 0.4 mg/kg, and that of Th, from 0.02 to 0.2 mg/kg. In the automorphic soils, the accumulation of U is observed as long as the floodplain is regularly flooded, while Th continues to accumulate even after the floodplain leaves the flood zone. In the hydromorphic soils, the accumulation of actinides continues over the entire chronological range. The results obtained show that the main soil properties determining the accumulation of actinides in soils are the content of clay minerals and iron oxides. The intake of actinides into the soils of the Amur River floodplain occurs mainly due to the weathering of melanocratic granitoid minerals in the alluvium. The mobilization of actinides is affected by pH in automorphic soils and Eh in hydromorphic soils.</p>\",\"PeriodicalId\":12781,\"journal\":{\"name\":\"Geochemistry International\",\"volume\":\"63 1\",\"pages\":\"96 - 109\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geochemistry International\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0016702924700848\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry International","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1134/S0016702924700848","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

首次在俄罗斯远东地区进行了一项研究,以评估阿穆尔河中游漫滩内5000年历史的土壤时间序列中锕系元素(U和Th)总量和流动形式的积累速度。利用回归模型表征了锕系元素与冲积土和残余冲积土性质的关系。结果表明,在演化过程中,自同态系列土壤中锕系元素总形态的含量由U的1 mg/kg增加到2 mg/kg, Th的4 mg/kg增加到10 mg/kg。在水态系列土壤中,在较短的时间内(2600年),U的增加幅度为1 ~ 3 mg/kg, Th的增加幅度为4 ~ 12 mg/kg。自形态和水形态土壤中流动态U和Th的含量分别从0.1 ~ 0.4 mg/kg和0.02 ~ 0.2 mg/kg增加。在自同构土壤中,只要洪泛区被定期淹没,就会观察到U的积累,而即使洪泛区离开洪泛区,Th也会继续积累。在水态土壤中,锕系元素的积累在整个年代范围内持续进行。结果表明,决定锕系元素在土壤中积累的主要土壤性质是粘土矿物和氧化铁的含量。阿穆尔河漫滩土壤中锕系元素的摄入主要是由于冲积层中黑色花岗岩类矿物的风化作用。自同构土壤的pH值和水成态土壤的Eh值分别影响锕系元素的动员。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Actinides in the Soil Chronosequence of the Amur River Floodplain

Actinides in the Soil Chronosequence of the Amur River Floodplain

For the first time, a study was conducted at the Russian Far East to assess the rate of accumulation of gross and mobile forms of actinides (U and Th) in a 5000-year-old soil chronosequence embedded within the floodplain of the middle reaches of the Amur River. The relationships between actinides and the properties of alluvial and residual alluvial soils are characterized using regression models. It was found that during the evolution, the content of the gross form of actinides in the soils of the automorphic series increased from 1 to 2 mg/kg for U and from 4 to 10 mg/kg for Th. In the soils of the hydromorphic series, the increase over a shorter time period (2600 years) was from 1 to 3 mg/kg for U and from 4 to 12 mg/kg for Th. The content of the mobile U form in automorphic and hydromorphic soils increased on average from 0.1 to 0.4 mg/kg, and that of Th, from 0.02 to 0.2 mg/kg. In the automorphic soils, the accumulation of U is observed as long as the floodplain is regularly flooded, while Th continues to accumulate even after the floodplain leaves the flood zone. In the hydromorphic soils, the accumulation of actinides continues over the entire chronological range. The results obtained show that the main soil properties determining the accumulation of actinides in soils are the content of clay minerals and iron oxides. The intake of actinides into the soils of the Amur River floodplain occurs mainly due to the weathering of melanocratic granitoid minerals in the alluvium. The mobilization of actinides is affected by pH in automorphic soils and Eh in hydromorphic soils.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geochemistry International
Geochemistry International 地学-地球化学与地球物理
CiteScore
1.60
自引率
12.50%
发文量
89
审稿时长
1 months
期刊介绍: Geochemistry International is a peer reviewed journal that publishes articles on cosmochemistry; geochemistry of magmatic, metamorphic, hydrothermal, and sedimentary processes; isotope geochemistry; organic geochemistry; applied geochemistry; and chemistry of the environment. Geochemistry International provides readers with a unique opportunity to refine their understanding of the geology of the vast territory of the Eurasian continent. The journal welcomes manuscripts from all countries in the English or Russian language.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信