利用梯度吸收层使钙钛矿太阳能电池性能翻倍的理论估计

IF 5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Monisha Nayak, Abu Jahid Akhtar and Sudip K. Saha
{"title":"利用梯度吸收层使钙钛矿太阳能电池性能翻倍的理论估计","authors":"Monisha Nayak, Abu Jahid Akhtar and Sudip K. Saha","doi":"10.1039/D4SE01271B","DOIUrl":null,"url":null,"abstract":"<p >Metal halide perovskite solar cells (PSCs) have shown a remarkable increase in efficiency, with the latest record of 26.7% for a single bandgap absorber. According to the Shockley–Queisser limit, single-junction PSCs are predicted to achieve a maximum efficiency of ≈33%. However, open circuit voltage (<em>V</em><small><sub>OC</sub></small>) losses originating from non-radiative recombination at the absorber/charge transporting layer (CTL) interfaces due to band-level mismatches and defect states cause a lag in achieving the actual limit of PSCs. Composition-dependent bandgap tuning in halide perovskites offers a great advantage in tuning the optical properties of the absorber layer. In this article, we introduce a novel scheme for absorber band grading by altering the metallic or B-site composition of the FAPb<small><sub>1−<em>y</em></sub></small>Sn<small><sub><em>y</em></sub></small>I<small><sub>3</sub></small> perovskite absorber. By replacing the single absorber layer (FAPb<small><sub>0.5</sub></small>Sn<small><sub>0.5</sub></small>I<small><sub>3</sub></small>) in the device configuration ITO/PEDOT:PSS/FAPb<small><sub>0.5</sub></small>Sn<small><sub>0.5</sub></small>I<small><sub>3</sub></small>/PCBM/Ag using a graded bandgap absorber (FAPb<small><sub>1−<em>y</em></sub></small>Sn<small><sub><em>y</em></sub></small>I<small><sub>3</sub></small>) with <em>y</em> varying between 0 and 1, a full range grading, the efficiency limit of the device is extended by 95%. Besides, a more convenient partial grading scheme with <em>y</em> of a smaller range can yield satisfactory results. A systematic study of both these grading schemes and simulations reveals that such an architectural design strategy with precise execution could be the next step in overcoming the practical limits of conventional single absorber PSCs.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 5","pages":" 1305-1316"},"PeriodicalIF":5.0000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical estimation to double the performance of perovskite solar cells using a graded absorber layer†\",\"authors\":\"Monisha Nayak, Abu Jahid Akhtar and Sudip K. Saha\",\"doi\":\"10.1039/D4SE01271B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Metal halide perovskite solar cells (PSCs) have shown a remarkable increase in efficiency, with the latest record of 26.7% for a single bandgap absorber. According to the Shockley–Queisser limit, single-junction PSCs are predicted to achieve a maximum efficiency of ≈33%. However, open circuit voltage (<em>V</em><small><sub>OC</sub></small>) losses originating from non-radiative recombination at the absorber/charge transporting layer (CTL) interfaces due to band-level mismatches and defect states cause a lag in achieving the actual limit of PSCs. Composition-dependent bandgap tuning in halide perovskites offers a great advantage in tuning the optical properties of the absorber layer. In this article, we introduce a novel scheme for absorber band grading by altering the metallic or B-site composition of the FAPb<small><sub>1−<em>y</em></sub></small>Sn<small><sub><em>y</em></sub></small>I<small><sub>3</sub></small> perovskite absorber. By replacing the single absorber layer (FAPb<small><sub>0.5</sub></small>Sn<small><sub>0.5</sub></small>I<small><sub>3</sub></small>) in the device configuration ITO/PEDOT:PSS/FAPb<small><sub>0.5</sub></small>Sn<small><sub>0.5</sub></small>I<small><sub>3</sub></small>/PCBM/Ag using a graded bandgap absorber (FAPb<small><sub>1−<em>y</em></sub></small>Sn<small><sub><em>y</em></sub></small>I<small><sub>3</sub></small>) with <em>y</em> varying between 0 and 1, a full range grading, the efficiency limit of the device is extended by 95%. Besides, a more convenient partial grading scheme with <em>y</em> of a smaller range can yield satisfactory results. A systematic study of both these grading schemes and simulations reveals that such an architectural design strategy with precise execution could be the next step in overcoming the practical limits of conventional single absorber PSCs.</p>\",\"PeriodicalId\":104,\"journal\":{\"name\":\"Sustainable Energy & Fuels\",\"volume\":\" 5\",\"pages\":\" 1305-1316\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Energy & Fuels\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/se/d4se01271b\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy & Fuels","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/se/d4se01271b","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

金属卤化物钙钛矿太阳能电池(PSCs)的效率有了显著的提高,单个带隙吸收器的效率达到了26.7%。根据Shockley-Queisser极限,预计单结psc的最大效率为≈33%。然而,由于带电平不匹配和缺陷状态,吸收层/电荷传输层(CTL)界面上的非辐射重组引起的开路电压(VOC)损失导致psc在达到实际极限方面存在滞后。卤化物钙钛矿中与成分相关的带隙调谐在调谐吸收层的光学性质方面具有很大的优势。在本文中,我们介绍了一种通过改变FAPb1−ySnyI3钙钛矿吸收剂的金属或b位组成来进行吸收剂波段分级的新方案。通过将器件配置ITO/PEDOT:PSS/FAPb0.5Sn0.5I3/PCBM/Ag中的单吸收层(FAPb0.5Sn0.5I3)替换为y在0和1之间变化的梯度带隙吸收层(FAPb1−ySnyI3),实现全范围分级,器件的效率极限提高了95%。另外,采用更方便的局部分级方案,y的取值范围较小,可以获得满意的结果。对这些分级方案和模拟的系统研究表明,这种精确执行的建筑设计策略可能是克服传统单一吸收体psc的实际限制的下一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Theoretical estimation to double the performance of perovskite solar cells using a graded absorber layer†

Theoretical estimation to double the performance of perovskite solar cells using a graded absorber layer†

Metal halide perovskite solar cells (PSCs) have shown a remarkable increase in efficiency, with the latest record of 26.7% for a single bandgap absorber. According to the Shockley–Queisser limit, single-junction PSCs are predicted to achieve a maximum efficiency of ≈33%. However, open circuit voltage (VOC) losses originating from non-radiative recombination at the absorber/charge transporting layer (CTL) interfaces due to band-level mismatches and defect states cause a lag in achieving the actual limit of PSCs. Composition-dependent bandgap tuning in halide perovskites offers a great advantage in tuning the optical properties of the absorber layer. In this article, we introduce a novel scheme for absorber band grading by altering the metallic or B-site composition of the FAPb1−ySnyI3 perovskite absorber. By replacing the single absorber layer (FAPb0.5Sn0.5I3) in the device configuration ITO/PEDOT:PSS/FAPb0.5Sn0.5I3/PCBM/Ag using a graded bandgap absorber (FAPb1−ySnyI3) with y varying between 0 and 1, a full range grading, the efficiency limit of the device is extended by 95%. Besides, a more convenient partial grading scheme with y of a smaller range can yield satisfactory results. A systematic study of both these grading schemes and simulations reveals that such an architectural design strategy with precise execution could be the next step in overcoming the practical limits of conventional single absorber PSCs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sustainable Energy & Fuels
Sustainable Energy & Fuels Energy-Energy Engineering and Power Technology
CiteScore
10.00
自引率
3.60%
发文量
394
期刊介绍: Sustainable Energy & Fuels will publish research that contributes to the development of sustainable energy technologies with a particular emphasis on new and next-generation technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信