NMPC实现设置的基于证书的可接受仪表板的派生:框架和相关的Python包

IF 4.9 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Mazen Alamir
{"title":"NMPC实现设置的基于证书的可接受仪表板的派生:框架和相关的Python包","authors":"Mazen Alamir","doi":"10.1109/TCST.2024.3499835","DOIUrl":null,"url":null,"abstract":"This brief presents a framework that delivers a certification-oriented dashboard of admissible nonlinear model predictive control (NMPC) implementation settings. This differs from the commonly adopted performance-centered tuning approaches by providing a dashboard of admissible setting options for which the optimal choice might be context-dependent. Some of the considered parameters are scarcely tuned in the literature on model predictive control (MPC)-parameter tuning such as the control updating period and the precision of the internal prediction. Moreover, a freely available <monospace>Python</monospace>-based implementation is also proposed, and typical results on an illustrative example are discussed highlighting the relevance of the contribution.","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"33 2","pages":"815-822"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Derivation of Certification-Based Admissibility Dashboard of NMPC Implementation Settings: Framework and Associated Python Package\",\"authors\":\"Mazen Alamir\",\"doi\":\"10.1109/TCST.2024.3499835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This brief presents a framework that delivers a certification-oriented dashboard of admissible nonlinear model predictive control (NMPC) implementation settings. This differs from the commonly adopted performance-centered tuning approaches by providing a dashboard of admissible setting options for which the optimal choice might be context-dependent. Some of the considered parameters are scarcely tuned in the literature on model predictive control (MPC)-parameter tuning such as the control updating period and the precision of the internal prediction. Moreover, a freely available <monospace>Python</monospace>-based implementation is also proposed, and typical results on an illustrative example are discussed highlighting the relevance of the contribution.\",\"PeriodicalId\":13103,\"journal\":{\"name\":\"IEEE Transactions on Control Systems Technology\",\"volume\":\"33 2\",\"pages\":\"815-822\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Control Systems Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10768261/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Control Systems Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10768261/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文简要介绍了一个框架,该框架提供了可接受非线性模型预测控制(NMPC)实现设置的面向认证的仪表板。这与通常采用的以性能为中心的调优方法不同,它提供了一个可接受的设置选项的指示板,其中最优选择可能与上下文相关。在模型预测控制(MPC)的文献中,一些被考虑的参数几乎没有被调谐,如控制更新周期和内部预测精度的参数调谐。此外,还提出了一个免费的基于python的实现,并讨论了一个说明性示例的典型结果,突出了贡献的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Derivation of Certification-Based Admissibility Dashboard of NMPC Implementation Settings: Framework and Associated Python Package
This brief presents a framework that delivers a certification-oriented dashboard of admissible nonlinear model predictive control (NMPC) implementation settings. This differs from the commonly adopted performance-centered tuning approaches by providing a dashboard of admissible setting options for which the optimal choice might be context-dependent. Some of the considered parameters are scarcely tuned in the literature on model predictive control (MPC)-parameter tuning such as the control updating period and the precision of the internal prediction. Moreover, a freely available Python-based implementation is also proposed, and typical results on an illustrative example are discussed highlighting the relevance of the contribution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Control Systems Technology
IEEE Transactions on Control Systems Technology 工程技术-工程:电子与电气
CiteScore
10.70
自引率
2.10%
发文量
218
审稿时长
6.7 months
期刊介绍: The IEEE Transactions on Control Systems Technology publishes high quality technical papers on technological advances in control engineering. The word technology is from the Greek technologia. The modern meaning is a scientific method to achieve a practical purpose. Control Systems Technology includes all aspects of control engineering needed to implement practical control systems, from analysis and design, through simulation and hardware. A primary purpose of the IEEE Transactions on Control Systems Technology is to have an archival publication which will bridge the gap between theory and practice. Papers are published in the IEEE Transactions on Control System Technology which disclose significant new knowledge, exploratory developments, or practical applications in all aspects of technology needed to implement control systems, from analysis and design through simulation, and hardware.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信