近阈值电压状态下数据路径能量预测与优化方法

IF 2.8 2区 工程技术 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Mahipal Dargupally;Lomash Chandra Acharya;Arvind K. Sharma;Sudeb Dasgupta;Anand Bulusu
{"title":"近阈值电压状态下数据路径能量预测与优化方法","authors":"Mahipal Dargupally;Lomash Chandra Acharya;Arvind K. Sharma;Sudeb Dasgupta;Anand Bulusu","doi":"10.1109/TVLSI.2024.3504856","DOIUrl":null,"url":null,"abstract":"In this article, we propose a method for sizing an arbitrary combinational datapath to minimize its energy consumption. Our method involves deriving expressions for the components of energy consumption at both the stage and path levels. In this work, we identify overshoot energy (<inline-formula> <tex-math>$E_{\\text {OS}}$ </tex-math></inline-formula>) consumption as a previously unreported component contributing to energy consumption, particularly significant in the near/sub-threshold voltage regime. We determine that this <inline-formula> <tex-math>$E_{\\text {OS}}$ </tex-math></inline-formula> consumption is proportional to the input and output transition times and size of a logic gate at a particular stage of a datapath. We also observe that, for a given number of stages (N) and path effort, the total energy consumption is optimized when the stage effort (f) in a datapath is kept constant. Based on our observations and derivations of all the energy components and the requirement for a constant “f” in the datapath, we develop a method to minimize the energies of a logic circuit while maintaining the timing closure requirement. We determine that the non-critical paths (NCPs) must be sized to a minimum “f” while maintaining the timing requirements. We verified our models on several ISCAS and EPFL benchmark circuits with an average reduction of 28.1% (41.2%) and 19.2% (28.4%) in energy consumption [figure of merit (FoM)], respectively. The proposed methodology predicts the total energy consumption at a stage and path level of N-stage logic, with only one-time SPICE simulation on a single stage, with a maximum error of 1.3% and 1.62%, respectively, against SPICE simulations. The simulations are performed in Synopsys HSPICE environment with ST Microelectronics 65 nm CMOS and 28 nm FDSOI technology nodes, resulting in a very good agreement with the developed methodology.","PeriodicalId":13425,"journal":{"name":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","volume":"33 3","pages":"771-779"},"PeriodicalIF":2.8000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Methodology for Datapath Energy Prediction and Optimization in Near Threshold Voltage Regime\",\"authors\":\"Mahipal Dargupally;Lomash Chandra Acharya;Arvind K. Sharma;Sudeb Dasgupta;Anand Bulusu\",\"doi\":\"10.1109/TVLSI.2024.3504856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we propose a method for sizing an arbitrary combinational datapath to minimize its energy consumption. Our method involves deriving expressions for the components of energy consumption at both the stage and path levels. In this work, we identify overshoot energy (<inline-formula> <tex-math>$E_{\\\\text {OS}}$ </tex-math></inline-formula>) consumption as a previously unreported component contributing to energy consumption, particularly significant in the near/sub-threshold voltage regime. We determine that this <inline-formula> <tex-math>$E_{\\\\text {OS}}$ </tex-math></inline-formula> consumption is proportional to the input and output transition times and size of a logic gate at a particular stage of a datapath. We also observe that, for a given number of stages (N) and path effort, the total energy consumption is optimized when the stage effort (f) in a datapath is kept constant. Based on our observations and derivations of all the energy components and the requirement for a constant “f” in the datapath, we develop a method to minimize the energies of a logic circuit while maintaining the timing closure requirement. We determine that the non-critical paths (NCPs) must be sized to a minimum “f” while maintaining the timing requirements. We verified our models on several ISCAS and EPFL benchmark circuits with an average reduction of 28.1% (41.2%) and 19.2% (28.4%) in energy consumption [figure of merit (FoM)], respectively. The proposed methodology predicts the total energy consumption at a stage and path level of N-stage logic, with only one-time SPICE simulation on a single stage, with a maximum error of 1.3% and 1.62%, respectively, against SPICE simulations. The simulations are performed in Synopsys HSPICE environment with ST Microelectronics 65 nm CMOS and 28 nm FDSOI technology nodes, resulting in a very good agreement with the developed methodology.\",\"PeriodicalId\":13425,\"journal\":{\"name\":\"IEEE Transactions on Very Large Scale Integration (VLSI) Systems\",\"volume\":\"33 3\",\"pages\":\"771-779\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Very Large Scale Integration (VLSI) Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10788034/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10788034/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种方法来确定任意组合数据路径的大小,以最小化其能量消耗。我们的方法包括推导阶段和路径两级能量消耗分量的表达式。在这项工作中,我们将超调能量($E_{\text {OS}}$)消耗确定为先前未报道的导致能量消耗的组件,在接近/亚阈值电压状态下尤其重要。我们确定这个$E_{\text {OS}}$消耗与数据路径特定阶段的输入和输出转换时间以及逻辑门的大小成正比。我们还观察到,对于给定数量的阶段(N)和路径努力,当数据路径中的阶段努力(f)保持不变时,总能量消耗是最优的。基于我们对所有能量分量的观察和推导以及对数据路径中常数“f”的要求,我们开发了一种方法来最小化逻辑电路的能量,同时保持定时关闭要求。我们确定非关键路径(ncp)的大小必须达到最小“f”,同时保持定时要求。我们在几个ISCAS和EPFL基准电路上验证了我们的模型,能耗平均分别降低了28.1%(41.2%)和19.2%(28.4%)[性能值(FoM)]。提出的方法预测n级逻辑的一级和路径级的总能耗,单级仅进行一次SPICE模拟,与SPICE模拟相比,最大误差分别为1.3%和1.62%。模拟在Synopsys HSPICE环境中进行,采用意法半导体65纳米CMOS和28纳米FDSOI技术节点,结果与所开发的方法非常吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Methodology for Datapath Energy Prediction and Optimization in Near Threshold Voltage Regime
In this article, we propose a method for sizing an arbitrary combinational datapath to minimize its energy consumption. Our method involves deriving expressions for the components of energy consumption at both the stage and path levels. In this work, we identify overshoot energy ( $E_{\text {OS}}$ ) consumption as a previously unreported component contributing to energy consumption, particularly significant in the near/sub-threshold voltage regime. We determine that this $E_{\text {OS}}$ consumption is proportional to the input and output transition times and size of a logic gate at a particular stage of a datapath. We also observe that, for a given number of stages (N) and path effort, the total energy consumption is optimized when the stage effort (f) in a datapath is kept constant. Based on our observations and derivations of all the energy components and the requirement for a constant “f” in the datapath, we develop a method to minimize the energies of a logic circuit while maintaining the timing closure requirement. We determine that the non-critical paths (NCPs) must be sized to a minimum “f” while maintaining the timing requirements. We verified our models on several ISCAS and EPFL benchmark circuits with an average reduction of 28.1% (41.2%) and 19.2% (28.4%) in energy consumption [figure of merit (FoM)], respectively. The proposed methodology predicts the total energy consumption at a stage and path level of N-stage logic, with only one-time SPICE simulation on a single stage, with a maximum error of 1.3% and 1.62%, respectively, against SPICE simulations. The simulations are performed in Synopsys HSPICE environment with ST Microelectronics 65 nm CMOS and 28 nm FDSOI technology nodes, resulting in a very good agreement with the developed methodology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.40
自引率
7.10%
发文量
187
审稿时长
3.6 months
期刊介绍: The IEEE Transactions on VLSI Systems is published as a monthly journal under the co-sponsorship of the IEEE Circuits and Systems Society, the IEEE Computer Society, and the IEEE Solid-State Circuits Society. Design and realization of microelectronic systems using VLSI/ULSI technologies require close collaboration among scientists and engineers in the fields of systems architecture, logic and circuit design, chips and wafer fabrication, packaging, testing and systems applications. Generation of specifications, design and verification must be performed at all abstraction levels, including the system, register-transfer, logic, circuit, transistor and process levels. To address this critical area through a common forum, the IEEE Transactions on VLSI Systems have been founded. The editorial board, consisting of international experts, invites original papers which emphasize and merit the novel systems integration aspects of microelectronic systems including interactions among systems design and partitioning, logic and memory design, digital and analog circuit design, layout synthesis, CAD tools, chips and wafer fabrication, testing and packaging, and systems level qualification. Thus, the coverage of these Transactions will focus on VLSI/ULSI microelectronic systems integration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信