{"title":"再论多机电网中PMU的最优配置问题","authors":"Mohamad H. Kazma;Ahmad F. Taha","doi":"10.1109/TCST.2024.3487029","DOIUrl":null,"url":null,"abstract":"To provide real-time visibility of physics-based states, phasor measurement units (PMUs) are deployed throughout power networks. PMU data enable real-time grid monitoring and control—and are essential in transitioning to smarter grids. Various considerations are taken into account when determining the geographic, optimal PMU placements (OPPs). This article focuses on the control-theoretic, observability aspect of OPP. A myriad of studies have investigated observability-based formulations to determine the OPP within a transmission network. However, they have mostly adopted a simplified representation of system dynamics, ignored basic algebraic equations that model power flows, disregarded renewables such as solar and wind, and did not model their uncertainty. Consequently, this article revisits the observability-based OPP problem by addressing the literature’s limitations. A nonlinear differential algebraic (NDAE) representation of the power system is considered. The system is discretized using various discretization approaches while explicitly accounting for uncertainty. A moving horizon estimation (MHE) approach is explored to reconstruct the joint differential and algebraic initial states of the system, as a gateway to the OPP problem, which is then formulated as a computationally tractable integer program (IP). Comprehensive numerical simulations on standard power networks are conducted to validate different aspects of this approach and test its robustness to various dynamical conditions.","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"33 2","pages":"493-511"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10745884","citationCount":"0","resultStr":"{\"title\":\"Revisiting the Optimal PMU Placement Problem in Multimachine Power Networks\",\"authors\":\"Mohamad H. Kazma;Ahmad F. Taha\",\"doi\":\"10.1109/TCST.2024.3487029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To provide real-time visibility of physics-based states, phasor measurement units (PMUs) are deployed throughout power networks. PMU data enable real-time grid monitoring and control—and are essential in transitioning to smarter grids. Various considerations are taken into account when determining the geographic, optimal PMU placements (OPPs). This article focuses on the control-theoretic, observability aspect of OPP. A myriad of studies have investigated observability-based formulations to determine the OPP within a transmission network. However, they have mostly adopted a simplified representation of system dynamics, ignored basic algebraic equations that model power flows, disregarded renewables such as solar and wind, and did not model their uncertainty. Consequently, this article revisits the observability-based OPP problem by addressing the literature’s limitations. A nonlinear differential algebraic (NDAE) representation of the power system is considered. The system is discretized using various discretization approaches while explicitly accounting for uncertainty. A moving horizon estimation (MHE) approach is explored to reconstruct the joint differential and algebraic initial states of the system, as a gateway to the OPP problem, which is then formulated as a computationally tractable integer program (IP). Comprehensive numerical simulations on standard power networks are conducted to validate different aspects of this approach and test its robustness to various dynamical conditions.\",\"PeriodicalId\":13103,\"journal\":{\"name\":\"IEEE Transactions on Control Systems Technology\",\"volume\":\"33 2\",\"pages\":\"493-511\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10745884\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Control Systems Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10745884/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Control Systems Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10745884/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Revisiting the Optimal PMU Placement Problem in Multimachine Power Networks
To provide real-time visibility of physics-based states, phasor measurement units (PMUs) are deployed throughout power networks. PMU data enable real-time grid monitoring and control—and are essential in transitioning to smarter grids. Various considerations are taken into account when determining the geographic, optimal PMU placements (OPPs). This article focuses on the control-theoretic, observability aspect of OPP. A myriad of studies have investigated observability-based formulations to determine the OPP within a transmission network. However, they have mostly adopted a simplified representation of system dynamics, ignored basic algebraic equations that model power flows, disregarded renewables such as solar and wind, and did not model their uncertainty. Consequently, this article revisits the observability-based OPP problem by addressing the literature’s limitations. A nonlinear differential algebraic (NDAE) representation of the power system is considered. The system is discretized using various discretization approaches while explicitly accounting for uncertainty. A moving horizon estimation (MHE) approach is explored to reconstruct the joint differential and algebraic initial states of the system, as a gateway to the OPP problem, which is then formulated as a computationally tractable integer program (IP). Comprehensive numerical simulations on standard power networks are conducted to validate different aspects of this approach and test its robustness to various dynamical conditions.
期刊介绍:
The IEEE Transactions on Control Systems Technology publishes high quality technical papers on technological advances in control engineering. The word technology is from the Greek technologia. The modern meaning is a scientific method to achieve a practical purpose. Control Systems Technology includes all aspects of control engineering needed to implement practical control systems, from analysis and design, through simulation and hardware. A primary purpose of the IEEE Transactions on Control Systems Technology is to have an archival publication which will bridge the gap between theory and practice. Papers are published in the IEEE Transactions on Control System Technology which disclose significant new knowledge, exploratory developments, or practical applications in all aspects of technology needed to implement control systems, from analysis and design through simulation, and hardware.