基于地理空间技术的加纳Volta河流域Waya流域山洪易感性评价

Bismark Mensah-Brako , Francis Ampiaw , Richard Kotei , Philip Kyaku
{"title":"基于地理空间技术的加纳Volta河流域Waya流域山洪易感性评价","authors":"Bismark Mensah-Brako ,&nbsp;Francis Ampiaw ,&nbsp;Richard Kotei ,&nbsp;Philip Kyaku","doi":"10.1016/j.wsee.2025.02.002","DOIUrl":null,"url":null,"abstract":"<div><div>The present study aims to assess the flash flood susceptibility of Waya watershed in the Lower Volta River Basin, Volta region, Ghana using geospatial technology-based morphometric analysis. Morphometric characteristics were determined using Advanced Spaceborne Thermal Emission and Reflection Radiometer DEM (30 m) in a GIS 10.7 environment. The morphometric ranking method was applied to prioritize sub-watersheds' susceptibility to flash floods. The results revealed that the watershed is a seventh-order drainage system with a dendritic drainage pattern. The mean bifurcation ratio (4.48), and form factor (0.20) are indicative of higher levels of surface runoff and high flash flood events. The stream frequency (3.27–4.14 km<sup>2</sup>), drainage density (2.24–2.51 km/km<sup>2</sup>), and infiltration number (8.05–10.22 km<sup>3</sup>) showed higher runoff and flash floods. Watershed relief (553 m), relative relief (194.4), ruggedness number (1.36), and mean slope (10.31 %) are indicative of flash flood susceptibility. The results further showed that seven sub-watersheds (SW1, SW5, WS6, SW8, SW9, SW10 and SW12) constituted 63.00 % of watershed ranked as high to very high susceptibility to flash flood, while two sub-watersheds (SW 2 and WS 7) 12.20 % of the watershed classified under moderate flood susceptibility zone for which specific sub-watersheds flood risk reduction strategies are required to mitigate the hazard of flash flood. Four sub-watersheds (SW3, SW4, SW11, and SW13) represented 24.80 % of the watershed ranked as low susceptibility to flash floods. The study recommends the construction of retention bunds and embankments in the inland valleys and wetlands as sustainable soil and water conservation measures to mitigate flash floods and promote sustainable inland valleys and wetlands rice production.</div></div>","PeriodicalId":101280,"journal":{"name":"Watershed Ecology and the Environment","volume":"7 ","pages":"Pages 58-73"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flash flood susceptibility assessment using geospatial technology-based morphometric analysis in Waya watershed, Volta River basin, Ghana\",\"authors\":\"Bismark Mensah-Brako ,&nbsp;Francis Ampiaw ,&nbsp;Richard Kotei ,&nbsp;Philip Kyaku\",\"doi\":\"10.1016/j.wsee.2025.02.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The present study aims to assess the flash flood susceptibility of Waya watershed in the Lower Volta River Basin, Volta region, Ghana using geospatial technology-based morphometric analysis. Morphometric characteristics were determined using Advanced Spaceborne Thermal Emission and Reflection Radiometer DEM (30 m) in a GIS 10.7 environment. The morphometric ranking method was applied to prioritize sub-watersheds' susceptibility to flash floods. The results revealed that the watershed is a seventh-order drainage system with a dendritic drainage pattern. The mean bifurcation ratio (4.48), and form factor (0.20) are indicative of higher levels of surface runoff and high flash flood events. The stream frequency (3.27–4.14 km<sup>2</sup>), drainage density (2.24–2.51 km/km<sup>2</sup>), and infiltration number (8.05–10.22 km<sup>3</sup>) showed higher runoff and flash floods. Watershed relief (553 m), relative relief (194.4), ruggedness number (1.36), and mean slope (10.31 %) are indicative of flash flood susceptibility. The results further showed that seven sub-watersheds (SW1, SW5, WS6, SW8, SW9, SW10 and SW12) constituted 63.00 % of watershed ranked as high to very high susceptibility to flash flood, while two sub-watersheds (SW 2 and WS 7) 12.20 % of the watershed classified under moderate flood susceptibility zone for which specific sub-watersheds flood risk reduction strategies are required to mitigate the hazard of flash flood. Four sub-watersheds (SW3, SW4, SW11, and SW13) represented 24.80 % of the watershed ranked as low susceptibility to flash floods. The study recommends the construction of retention bunds and embankments in the inland valleys and wetlands as sustainable soil and water conservation measures to mitigate flash floods and promote sustainable inland valleys and wetlands rice production.</div></div>\",\"PeriodicalId\":101280,\"journal\":{\"name\":\"Watershed Ecology and the Environment\",\"volume\":\"7 \",\"pages\":\"Pages 58-73\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Watershed Ecology and the Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589471425000051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Watershed Ecology and the Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589471425000051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在利用基于地理空间技术的形态计量学分析,评估加纳Volta地区下Volta河流域Waya流域的山洪易感性。在GIS 10.7环境下,使用先进的星载热发射和反射辐射计DEM (30 m)确定形态测量特征。采用形态计量排序法对流域山洪易感性进行排序。结果表明,该流域属7级水系,属树突状水系。平均分叉比(4.48)和形状因子(0.20)表明地表径流水平较高,山洪事件频发。径流频次(3.27 ~ 4.14 km2)、排水密度(2.24 ~ 2.51 km/km2)和入渗数(8.05 ~ 10.22 km3)均表现出较高的径流和山洪强度。流域起伏度(553 m)、相对起伏度(194.4 m)、崎岖度(1.36 m)和平均坡度(10.31%)是山洪易感性的标志。结果进一步表明,7个流域(SW1、SW5、WS6、SW8、SW9、SW10和SW12)占山洪易感性高至极高流域的63.00%,而2个流域(sw2和ws7)占中度易感性流域的12.20%,需要采取特定的流域洪水风险降低策略来减轻山洪的危害。4个子流域(SW3、SW4、SW11和SW13)占山洪易感性低的流域的24.80%。该研究建议在内陆山谷和湿地建设涵养带和堤防,作为可持续的水土保持措施,以减轻山洪暴发,促进内陆山谷和湿地的可持续水稻生产。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flash flood susceptibility assessment using geospatial technology-based morphometric analysis in Waya watershed, Volta River basin, Ghana
The present study aims to assess the flash flood susceptibility of Waya watershed in the Lower Volta River Basin, Volta region, Ghana using geospatial technology-based morphometric analysis. Morphometric characteristics were determined using Advanced Spaceborne Thermal Emission and Reflection Radiometer DEM (30 m) in a GIS 10.7 environment. The morphometric ranking method was applied to prioritize sub-watersheds' susceptibility to flash floods. The results revealed that the watershed is a seventh-order drainage system with a dendritic drainage pattern. The mean bifurcation ratio (4.48), and form factor (0.20) are indicative of higher levels of surface runoff and high flash flood events. The stream frequency (3.27–4.14 km2), drainage density (2.24–2.51 km/km2), and infiltration number (8.05–10.22 km3) showed higher runoff and flash floods. Watershed relief (553 m), relative relief (194.4), ruggedness number (1.36), and mean slope (10.31 %) are indicative of flash flood susceptibility. The results further showed that seven sub-watersheds (SW1, SW5, WS6, SW8, SW9, SW10 and SW12) constituted 63.00 % of watershed ranked as high to very high susceptibility to flash flood, while two sub-watersheds (SW 2 and WS 7) 12.20 % of the watershed classified under moderate flood susceptibility zone for which specific sub-watersheds flood risk reduction strategies are required to mitigate the hazard of flash flood. Four sub-watersheds (SW3, SW4, SW11, and SW13) represented 24.80 % of the watershed ranked as low susceptibility to flash floods. The study recommends the construction of retention bunds and embankments in the inland valleys and wetlands as sustainable soil and water conservation measures to mitigate flash floods and promote sustainable inland valleys and wetlands rice production.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信