Chenlong Yu , Ting Lu , Guohua Liu , Xiaoang Zhai , Wuyan Deng , Jiayu Wan , Yang Liu , Xin Li
{"title":"Dimensional-noise-aware battery lifetime prediction via an EM-TLS framework","authors":"Chenlong Yu , Ting Lu , Guohua Liu , Xiaoang Zhai , Wuyan Deng , Jiayu Wan , Yang Liu , Xin Li","doi":"10.1016/j.pnsc.2024.11.009","DOIUrl":null,"url":null,"abstract":"<div><div>Machine learning has been massively utilized to construct data-driven solutions for predicting the lifetime of rechargeable batteries in recent years, which project the physical measurements obtained during the early charging/discharging cycles to the remaining useful lifetime. While most existing techniques train the prediction model through minimizing the prediction error only, the errors associated with the physical measurements can also induce negative impact to the prediction accuracy. Although total-least-squares (TLS) regression has been applied to address this issue, it relies on the unrealistic assumption that the distributions of measurement errors on all input variables are equivalent, and cannot appropriately capture the practical characteristics of battery degradation. In order to tackle this challenge, this work intends to model the variations along different input dimensions, thereby improving the accuracy and robustness of battery lifetime prediction. In specific, we propose an innovative EM-TLS framework that enhances the TLS-based prediction to accommodate dimension-variate errors, while simultaneously investigating the distributions of them using expectation-maximization (EM). Experiments have been conducted to validate the proposed method based on the data of commercial Lithium-Ion batteries, where it reduces the prediction error by up to 29.9 % compared with conventional TLS. This demonstrates the immense potential of the proposed method for advancing the R&D of rechargeable batteries.</div></div>","PeriodicalId":20742,"journal":{"name":"Progress in Natural Science: Materials International","volume":"35 1","pages":"Pages 146-155"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Natural Science: Materials International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1002007124002430","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Dimensional-noise-aware battery lifetime prediction via an EM-TLS framework
Machine learning has been massively utilized to construct data-driven solutions for predicting the lifetime of rechargeable batteries in recent years, which project the physical measurements obtained during the early charging/discharging cycles to the remaining useful lifetime. While most existing techniques train the prediction model through minimizing the prediction error only, the errors associated with the physical measurements can also induce negative impact to the prediction accuracy. Although total-least-squares (TLS) regression has been applied to address this issue, it relies on the unrealistic assumption that the distributions of measurement errors on all input variables are equivalent, and cannot appropriately capture the practical characteristics of battery degradation. In order to tackle this challenge, this work intends to model the variations along different input dimensions, thereby improving the accuracy and robustness of battery lifetime prediction. In specific, we propose an innovative EM-TLS framework that enhances the TLS-based prediction to accommodate dimension-variate errors, while simultaneously investigating the distributions of them using expectation-maximization (EM). Experiments have been conducted to validate the proposed method based on the data of commercial Lithium-Ion batteries, where it reduces the prediction error by up to 29.9 % compared with conventional TLS. This demonstrates the immense potential of the proposed method for advancing the R&D of rechargeable batteries.
期刊介绍:
Progress in Natural Science: Materials International provides scientists and engineers throughout the world with a central vehicle for the exchange and dissemination of basic theoretical studies and applied research of advanced materials. The emphasis is placed on original research, both analytical and experimental, which is of permanent interest to engineers and scientists, covering all aspects of new materials and technologies, such as, energy and environmental materials; advanced structural materials; advanced transportation materials, functional and electronic materials; nano-scale and amorphous materials; health and biological materials; materials modeling and simulation; materials characterization; and so on. The latest research achievements and innovative papers in basic theoretical studies and applied research of material science will be carefully selected and promptly reported. Thus, the aim of this Journal is to serve the global materials science and technology community with the latest research findings.
As a service to readers, an international bibliography of recent publications in advanced materials is published bimonthly.