氧还原反应多孔结构研究进展

IF 4.8 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ying Chen , Huawei Wang , Yujing Li
{"title":"氧还原反应多孔结构研究进展","authors":"Ying Chen ,&nbsp;Huawei Wang ,&nbsp;Yujing Li","doi":"10.1016/j.pnsc.2024.12.003","DOIUrl":null,"url":null,"abstract":"<div><div>As environmental concerns grow, there is a global shift from traditional fossil energy. Hydrogen fuel cells are gaining attention, but high material costs limit their adoption in large scale. The oxygen reduction reaction at the cathode of fuel cell, which dominates the electrochemical kinetics, relies mainly on platinum-group-metal (PGM) catalysts, hence research is focused on minimizing PGM or developing non-PGM catalysts. Porous materials possess unique physicochemical properties, and have shown great potential in advancing catalyst technology in fuel cells. This review summarizes the recent fundamental and technological advances of porous catalysts for oxygen reduction reactions including PGM and non-PGM catalysts, discusses the mechanisms underlying the enhanced catalytic activity through structural design and surface modification. It also highlights the comprehensive impact of porous materials in oxygen reduction reactions and membrane electrode assemblies, the main challenges, and provides perspectives on research of porous catalyst.</div></div>","PeriodicalId":20742,"journal":{"name":"Progress in Natural Science: Materials International","volume":"35 1","pages":"Pages 83-97"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent advances in porous structures for oxygen reduction reaction\",\"authors\":\"Ying Chen ,&nbsp;Huawei Wang ,&nbsp;Yujing Li\",\"doi\":\"10.1016/j.pnsc.2024.12.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As environmental concerns grow, there is a global shift from traditional fossil energy. Hydrogen fuel cells are gaining attention, but high material costs limit their adoption in large scale. The oxygen reduction reaction at the cathode of fuel cell, which dominates the electrochemical kinetics, relies mainly on platinum-group-metal (PGM) catalysts, hence research is focused on minimizing PGM or developing non-PGM catalysts. Porous materials possess unique physicochemical properties, and have shown great potential in advancing catalyst technology in fuel cells. This review summarizes the recent fundamental and technological advances of porous catalysts for oxygen reduction reactions including PGM and non-PGM catalysts, discusses the mechanisms underlying the enhanced catalytic activity through structural design and surface modification. It also highlights the comprehensive impact of porous materials in oxygen reduction reactions and membrane electrode assemblies, the main challenges, and provides perspectives on research of porous catalyst.</div></div>\",\"PeriodicalId\":20742,\"journal\":{\"name\":\"Progress in Natural Science: Materials International\",\"volume\":\"35 1\",\"pages\":\"Pages 83-97\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Natural Science: Materials International\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1002007124002491\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Natural Science: Materials International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1002007124002491","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

随着对环境问题的担忧日益加剧,全球正在从传统的化石能源转向能源。氢燃料电池正受到人们的关注,但高昂的材料成本限制了其大规模应用。燃料电池阴极氧还原反应在电化学动力学中占主导地位,主要依赖于铂族金属(PGM)催化剂,因此研究的重点是减少PGM或开发非PGM催化剂。多孔材料具有独特的物理化学性质,在推进燃料电池催化剂技术方面显示出巨大的潜力。本文综述了近年来用于氧还原反应的多孔催化剂的基本原理和技术进展,包括PGM和非PGM催化剂,并从结构设计和表面改性两方面探讨了其增强催化活性的机理。强调了多孔材料在氧还原反应和膜电极组装中的综合影响、主要挑战,并对多孔催化剂的研究提出了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recent advances in porous structures for oxygen reduction reaction
As environmental concerns grow, there is a global shift from traditional fossil energy. Hydrogen fuel cells are gaining attention, but high material costs limit their adoption in large scale. The oxygen reduction reaction at the cathode of fuel cell, which dominates the electrochemical kinetics, relies mainly on platinum-group-metal (PGM) catalysts, hence research is focused on minimizing PGM or developing non-PGM catalysts. Porous materials possess unique physicochemical properties, and have shown great potential in advancing catalyst technology in fuel cells. This review summarizes the recent fundamental and technological advances of porous catalysts for oxygen reduction reactions including PGM and non-PGM catalysts, discusses the mechanisms underlying the enhanced catalytic activity through structural design and surface modification. It also highlights the comprehensive impact of porous materials in oxygen reduction reactions and membrane electrode assemblies, the main challenges, and provides perspectives on research of porous catalyst.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.60
自引率
2.10%
发文量
2812
审稿时长
49 days
期刊介绍: Progress in Natural Science: Materials International provides scientists and engineers throughout the world with a central vehicle for the exchange and dissemination of basic theoretical studies and applied research of advanced materials. The emphasis is placed on original research, both analytical and experimental, which is of permanent interest to engineers and scientists, covering all aspects of new materials and technologies, such as, energy and environmental materials; advanced structural materials; advanced transportation materials, functional and electronic materials; nano-scale and amorphous materials; health and biological materials; materials modeling and simulation; materials characterization; and so on. The latest research achievements and innovative papers in basic theoretical studies and applied research of material science will be carefully selected and promptly reported. Thus, the aim of this Journal is to serve the global materials science and technology community with the latest research findings. As a service to readers, an international bibliography of recent publications in advanced materials is published bimonthly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信