广义人再识别的对抗性扰动与防御

IF 6.3 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Hongchen Tan , Kaiqiang Xu , Pingping Tao , Xiuping Liu
{"title":"广义人再识别的对抗性扰动与防御","authors":"Hongchen Tan ,&nbsp;Kaiqiang Xu ,&nbsp;Pingping Tao ,&nbsp;Xiuping Liu","doi":"10.1016/j.neunet.2025.107287","DOIUrl":null,"url":null,"abstract":"<div><div>In the Domain Generalizable Person Re-Identification (DG Re-ID) task, the quality of identity-relevant descriptor is crucial for domain generalization performance. However, for hard-matching samples, it is difficult to separate high-quality identity-relevant feature from identity-irrelevant feature. It will inevitably affect the domain generalization performance. Thus, in this paper, we try to enhance the model’s ability to separate identity-relevant feature from identity-irrelevant feature of hard matching samples, to achieve high-performance domain generalization. To this end, we propose an Adversarial Perturbation and Defense (APD) Re-identification Method. In the APD, to synthesize hard matching samples, we introduce a Metric-Perturbation Generation Network (MPG-Net) grounded in the concept of metric adversariality. In the MPG-Net, we try to perturb the metric relationship of samples in the latent space, while preserving the essential visual details of the original samples. Then, to capture high-quality identity-relevant feature, we propose a Semantic Purification Network (SP-Net). The hard matching samples synthesized by MPG-Net is used to train the SP-Net. In the SP-Net, we further design the Semantic Self-perturbation and Defense (SSD) Scheme, to better disentangle and purify identity-relevant feature from these hard matching samples. Above all, through extensive experimentation, we validate the effectiveness of the APD method in the DG Re-ID task.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"186 ","pages":"Article 107287"},"PeriodicalIF":6.3000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adversarial perturbation and defense for generalizable person re-identification\",\"authors\":\"Hongchen Tan ,&nbsp;Kaiqiang Xu ,&nbsp;Pingping Tao ,&nbsp;Xiuping Liu\",\"doi\":\"10.1016/j.neunet.2025.107287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the Domain Generalizable Person Re-Identification (DG Re-ID) task, the quality of identity-relevant descriptor is crucial for domain generalization performance. However, for hard-matching samples, it is difficult to separate high-quality identity-relevant feature from identity-irrelevant feature. It will inevitably affect the domain generalization performance. Thus, in this paper, we try to enhance the model’s ability to separate identity-relevant feature from identity-irrelevant feature of hard matching samples, to achieve high-performance domain generalization. To this end, we propose an Adversarial Perturbation and Defense (APD) Re-identification Method. In the APD, to synthesize hard matching samples, we introduce a Metric-Perturbation Generation Network (MPG-Net) grounded in the concept of metric adversariality. In the MPG-Net, we try to perturb the metric relationship of samples in the latent space, while preserving the essential visual details of the original samples. Then, to capture high-quality identity-relevant feature, we propose a Semantic Purification Network (SP-Net). The hard matching samples synthesized by MPG-Net is used to train the SP-Net. In the SP-Net, we further design the Semantic Self-perturbation and Defense (SSD) Scheme, to better disentangle and purify identity-relevant feature from these hard matching samples. Above all, through extensive experimentation, we validate the effectiveness of the APD method in the DG Re-ID task.</div></div>\",\"PeriodicalId\":49763,\"journal\":{\"name\":\"Neural Networks\",\"volume\":\"186 \",\"pages\":\"Article 107287\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893608025001662\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608025001662","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

在领域可泛化人员再识别(DG - id)任务中,身份相关描述符的质量对领域泛化性能至关重要。然而,对于硬匹配样本,很难从身份无关特征中分离出高质量的身份相关特征。这将不可避免地影响域泛化性能。因此,在本文中,我们试图增强模型对硬匹配样本中身份相关特征和身份无关特征的分离能力,以实现高性能的领域泛化。为此,我们提出了一种对抗性扰动和防御(APD)再识别方法。在APD中,为了合成硬匹配样本,我们引入了基于度量对抗概念的度量摄动生成网络(MPG-Net)。在MPG-Net中,我们试图扰动潜在空间中样本的度量关系,同时保留原始样本的基本视觉细节。然后,为了捕获高质量的身份相关特征,我们提出了语义净化网络(SP-Net)。利用MPG-Net合成的硬匹配样本对SP-Net进行训练。在SP-Net中,我们进一步设计了语义自摄和防御(SSD)方案,以更好地从这些硬匹配样本中分离和净化身份相关特征。最重要的是,通过大量的实验,我们验证了APD方法在DG Re-ID任务中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adversarial perturbation and defense for generalizable person re-identification
In the Domain Generalizable Person Re-Identification (DG Re-ID) task, the quality of identity-relevant descriptor is crucial for domain generalization performance. However, for hard-matching samples, it is difficult to separate high-quality identity-relevant feature from identity-irrelevant feature. It will inevitably affect the domain generalization performance. Thus, in this paper, we try to enhance the model’s ability to separate identity-relevant feature from identity-irrelevant feature of hard matching samples, to achieve high-performance domain generalization. To this end, we propose an Adversarial Perturbation and Defense (APD) Re-identification Method. In the APD, to synthesize hard matching samples, we introduce a Metric-Perturbation Generation Network (MPG-Net) grounded in the concept of metric adversariality. In the MPG-Net, we try to perturb the metric relationship of samples in the latent space, while preserving the essential visual details of the original samples. Then, to capture high-quality identity-relevant feature, we propose a Semantic Purification Network (SP-Net). The hard matching samples synthesized by MPG-Net is used to train the SP-Net. In the SP-Net, we further design the Semantic Self-perturbation and Defense (SSD) Scheme, to better disentangle and purify identity-relevant feature from these hard matching samples. Above all, through extensive experimentation, we validate the effectiveness of the APD method in the DG Re-ID task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信