Matteo Mendula , Paolo Bellavista , Marco Levorato , Sharon Ladron de Guevara Contreras
{"title":"A novel middleware for adaptive and efficient split computing for real-time object detection","authors":"Matteo Mendula , Paolo Bellavista , Marco Levorato , Sharon Ladron de Guevara Contreras","doi":"10.1016/j.pmcj.2025.102028","DOIUrl":null,"url":null,"abstract":"<div><div>Real-world applications requiring real-time responsiveness frequently rely on energy-intensive and compute-heavy neural network algorithms. Strategies include deploying distributed and optimized Deep Neural Networks on mobile devices, which can lead to considerable energy consumption and degraded performance, or offloading larger models to edge servers, which requires low-latency wireless channels. Here we present Furcifer, a novel middleware that autonomously adjusts the computing strategy (i.e., local computing, edge computing, or split computing) based on context conditions. Utilizing container-based services and low-complexity predictors that generalize across environments, Furcifer supports supervised compression as a viable alternative to pure local or remote processing in real-time environments. An extensive set of experiments coversdiverse scenarios, including both stable and highly dynamic channel environments with unpredictable changes in connection quality and load. In moderate-varying scenarios, Furcifer demonstrates significant benefits: achieving a 2x reduction in energy consumption, a 30% higher mean Average Precision score compared to local computing, and a three-fold FPS increase over static offloading. In highly dynamic environments with unreliable connectivity and rapid increases in concurrent clients, Furcifer’s predictive capabilities preserves up to 30% energy, achieving a 16% higher accuracy rate, and completing 80% more frame inferences compared to pure local computing and approaches without trend forecasting, respectively.</div></div>","PeriodicalId":49005,"journal":{"name":"Pervasive and Mobile Computing","volume":"108 ","pages":"Article 102028"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pervasive and Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574119225000173","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A novel middleware for adaptive and efficient split computing for real-time object detection
Real-world applications requiring real-time responsiveness frequently rely on energy-intensive and compute-heavy neural network algorithms. Strategies include deploying distributed and optimized Deep Neural Networks on mobile devices, which can lead to considerable energy consumption and degraded performance, or offloading larger models to edge servers, which requires low-latency wireless channels. Here we present Furcifer, a novel middleware that autonomously adjusts the computing strategy (i.e., local computing, edge computing, or split computing) based on context conditions. Utilizing container-based services and low-complexity predictors that generalize across environments, Furcifer supports supervised compression as a viable alternative to pure local or remote processing in real-time environments. An extensive set of experiments coversdiverse scenarios, including both stable and highly dynamic channel environments with unpredictable changes in connection quality and load. In moderate-varying scenarios, Furcifer demonstrates significant benefits: achieving a 2x reduction in energy consumption, a 30% higher mean Average Precision score compared to local computing, and a three-fold FPS increase over static offloading. In highly dynamic environments with unreliable connectivity and rapid increases in concurrent clients, Furcifer’s predictive capabilities preserves up to 30% energy, achieving a 16% higher accuracy rate, and completing 80% more frame inferences compared to pure local computing and approaches without trend forecasting, respectively.
期刊介绍:
As envisioned by Mark Weiser as early as 1991, pervasive computing systems and services have truly become integral parts of our daily lives. Tremendous developments in a multitude of technologies ranging from personalized and embedded smart devices (e.g., smartphones, sensors, wearables, IoTs, etc.) to ubiquitous connectivity, via a variety of wireless mobile communications and cognitive networking infrastructures, to advanced computing techniques (including edge, fog and cloud) and user-friendly middleware services and platforms have significantly contributed to the unprecedented advances in pervasive and mobile computing. Cutting-edge applications and paradigms have evolved, such as cyber-physical systems and smart environments (e.g., smart city, smart energy, smart transportation, smart healthcare, etc.) that also involve human in the loop through social interactions and participatory and/or mobile crowd sensing, for example. The goal of pervasive computing systems is to improve human experience and quality of life, without explicit awareness of the underlying communications and computing technologies.
The Pervasive and Mobile Computing Journal (PMC) is a high-impact, peer-reviewed technical journal that publishes high-quality scientific articles spanning theory and practice, and covering all aspects of pervasive and mobile computing and systems.