基于联苯的结晶泡沫碳同素异形体

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xingli Li, Tao Chen, Jiaqi Lin, Jiaxin Jiang, Hongyan Guo, Xiaowei Sheng, Weiyi Wang, Xiaojun Wu, Zhiwen Zhuo* and Ning Lu*, 
{"title":"基于联苯的结晶泡沫碳同素异形体","authors":"Xingli Li,&nbsp;Tao Chen,&nbsp;Jiaqi Lin,&nbsp;Jiaxin Jiang,&nbsp;Hongyan Guo,&nbsp;Xiaowei Sheng,&nbsp;Weiyi Wang,&nbsp;Xiaojun Wu,&nbsp;Zhiwen Zhuo* and Ning Lu*,&nbsp;","doi":"10.1021/acsami.4c1926610.1021/acsami.4c19266","DOIUrl":null,"url":null,"abstract":"<p >Developing new allotropes with excellent properties and high synthesizability is an intriguing and challenging topic for carbon materials. Based on the experimental biphenylene monolayers, varied three-dimensional crystalline foam carbon allotropes with parallel channels in the structure are theoretically designed. These calculated foam carbon structures are mostly semimetals or semiconductors. The selected representatives possess lattice dynamic stability, high thermal stability, great mechanical performance stability, and feasible synthesizability. Moreover, the selected foam carbon structures exhibit high feasibility in ion filtration, transport, or storage for different ion species. The representative structure (3D-C<sub>48</sub>-Z<sub>2</sub>-R<sub>4</sub>R<sub>4</sub>-R<sub>6</sub>-trans) exhibits a high theoretical lithium storage capacity of 930.6 mAh·g<sup>–1</sup>, low diffusion barriers of only 0.079 eV, suitable open-circuit voltage of 0.905–0.071 V, and relatively small volume change (8.5%). Besides, a nonfoam-limit structure (BPN-diamond) is found to be a direct bandgap semiconductor with a bandgap of 4.073 eV (HSE06), exhibiting ultrahigh hardness (<i>H</i><sub>V</sub> ∼ 76.4 GPa), high carrier mobility (up to 5.97 × 10<sup>3</sup> cm<sup>2</sup> V<sup>–1</sup> s<sup>–1</sup>), good optical absorption ability in the UV region, and high synthesizability. These findings suggest that the biphenylene-based foam carbon allotropes are potentially excellent multifunctional materials with applications in flexible and ductile materials, ion electron mixed conductors, ion filtration, and anode materials for Li ion batteries.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"17 8","pages":"12023–12033 12023–12033"},"PeriodicalIF":8.2000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biphenylene-Based Crystalline Foam Carbon Allotropes\",\"authors\":\"Xingli Li,&nbsp;Tao Chen,&nbsp;Jiaqi Lin,&nbsp;Jiaxin Jiang,&nbsp;Hongyan Guo,&nbsp;Xiaowei Sheng,&nbsp;Weiyi Wang,&nbsp;Xiaojun Wu,&nbsp;Zhiwen Zhuo* and Ning Lu*,&nbsp;\",\"doi\":\"10.1021/acsami.4c1926610.1021/acsami.4c19266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Developing new allotropes with excellent properties and high synthesizability is an intriguing and challenging topic for carbon materials. Based on the experimental biphenylene monolayers, varied three-dimensional crystalline foam carbon allotropes with parallel channels in the structure are theoretically designed. These calculated foam carbon structures are mostly semimetals or semiconductors. The selected representatives possess lattice dynamic stability, high thermal stability, great mechanical performance stability, and feasible synthesizability. Moreover, the selected foam carbon structures exhibit high feasibility in ion filtration, transport, or storage for different ion species. The representative structure (3D-C<sub>48</sub>-Z<sub>2</sub>-R<sub>4</sub>R<sub>4</sub>-R<sub>6</sub>-trans) exhibits a high theoretical lithium storage capacity of 930.6 mAh·g<sup>–1</sup>, low diffusion barriers of only 0.079 eV, suitable open-circuit voltage of 0.905–0.071 V, and relatively small volume change (8.5%). Besides, a nonfoam-limit structure (BPN-diamond) is found to be a direct bandgap semiconductor with a bandgap of 4.073 eV (HSE06), exhibiting ultrahigh hardness (<i>H</i><sub>V</sub> ∼ 76.4 GPa), high carrier mobility (up to 5.97 × 10<sup>3</sup> cm<sup>2</sup> V<sup>–1</sup> s<sup>–1</sup>), good optical absorption ability in the UV region, and high synthesizability. These findings suggest that the biphenylene-based foam carbon allotropes are potentially excellent multifunctional materials with applications in flexible and ductile materials, ion electron mixed conductors, ion filtration, and anode materials for Li ion batteries.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"17 8\",\"pages\":\"12023–12033 12023–12033\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsami.4c19266\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.4c19266","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

开发具有优异性能和高可合成性的新型同素异形体是碳材料领域一个有趣而富有挑战性的课题。在实验制备的联苯单层材料的基础上,从理论上设计了结构上具有平行通道的三维晶体泡沫碳同素异形体。这些计算出来的泡沫碳结构大多是半金属或半导体。所选代表材料具有晶格动态稳定性、高热稳定性、良好的力学性能稳定性和可行的合成性。此外,所选择的泡沫碳结构在不同离子种类的离子过滤、运输或储存方面表现出很高的可行性。具有代表性的3D-C48-Z2-R4R4-R6-trans结构具有930.6 mAh·g-1的高理论锂存储容量、0.079 eV的低扩散势垒、0.905-0.071 V的合适开路电压和相对较小的体积变化(8.5%)。此外,发现非泡沫极限结构(bpn -金刚石)是一种直接带隙半导体,带隙为4.073 eV (HSE06),具有超高硬度(HV ~ 76.4 GPa),高载流子迁移率(高达5.97 × 103 cm2 V-1 s-1),良好的紫外区光吸收能力和高合成性。这些发现表明,二苯基泡沫碳同素异素物是一种潜在的优秀多功能材料,可用于柔性和延展性材料、离子电子混合导体、离子过滤和锂离子电池的负极材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Biphenylene-Based Crystalline Foam Carbon Allotropes

Biphenylene-Based Crystalline Foam Carbon Allotropes

Developing new allotropes with excellent properties and high synthesizability is an intriguing and challenging topic for carbon materials. Based on the experimental biphenylene monolayers, varied three-dimensional crystalline foam carbon allotropes with parallel channels in the structure are theoretically designed. These calculated foam carbon structures are mostly semimetals or semiconductors. The selected representatives possess lattice dynamic stability, high thermal stability, great mechanical performance stability, and feasible synthesizability. Moreover, the selected foam carbon structures exhibit high feasibility in ion filtration, transport, or storage for different ion species. The representative structure (3D-C48-Z2-R4R4-R6-trans) exhibits a high theoretical lithium storage capacity of 930.6 mAh·g–1, low diffusion barriers of only 0.079 eV, suitable open-circuit voltage of 0.905–0.071 V, and relatively small volume change (8.5%). Besides, a nonfoam-limit structure (BPN-diamond) is found to be a direct bandgap semiconductor with a bandgap of 4.073 eV (HSE06), exhibiting ultrahigh hardness (HV ∼ 76.4 GPa), high carrier mobility (up to 5.97 × 103 cm2 V–1 s–1), good optical absorption ability in the UV region, and high synthesizability. These findings suggest that the biphenylene-based foam carbon allotropes are potentially excellent multifunctional materials with applications in flexible and ductile materials, ion electron mixed conductors, ion filtration, and anode materials for Li ion batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信