用片上环纳米异质结构稳定的欠配位二维铂纳米环用于高效碱性析氢反应

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Chen Ma, Weiwei Chen, Yanjie Wu, Wenbin Wang, Lei Xu, Changsheng Chen, Long Zheng, Gang Wang, Peng Han, Ping Gu, Xiao Wang, Ye Zhu, Zhiyuan Zeng, Hongyan He, Qiyuan He*, Zhihai Ke*, Dong Su* and Ye Chen*, 
{"title":"用片上环纳米异质结构稳定的欠配位二维铂纳米环用于高效碱性析氢反应","authors":"Chen Ma,&nbsp;Weiwei Chen,&nbsp;Yanjie Wu,&nbsp;Wenbin Wang,&nbsp;Lei Xu,&nbsp;Changsheng Chen,&nbsp;Long Zheng,&nbsp;Gang Wang,&nbsp;Peng Han,&nbsp;Ping Gu,&nbsp;Xiao Wang,&nbsp;Ye Zhu,&nbsp;Zhiyuan Zeng,&nbsp;Hongyan He,&nbsp;Qiyuan He*,&nbsp;Zhihai Ke*,&nbsp;Dong Su* and Ye Chen*,&nbsp;","doi":"10.1021/acs.nanolett.4c0583310.1021/acs.nanolett.4c05833","DOIUrl":null,"url":null,"abstract":"<p >Platinum (Pt) is a state-of-the-art electrocatalyst for green hydrogen production in alkaline electrolytes. The delicate design and fabrication of two-dimensional (2D) Pt nanocatalysts can significantly enhance atomic utilization efficiency, while further improving intrinsic catalytic performance by modulating the density of surface active sites. However, the high surface energy and morphology complexity of 2D nanostructures often result in poor structural stability under the working conditions. Here, we report the synthesis of a 2D ring-on-sheet nanoheterostructure featuring abundant low-coordination Pt sites in which a defect-rich Pt nanoring is stabilized by an ultrathin 2D rhodium (Rh) support. The Rh@Pt nanoring exhibits remarkably enhanced activity and stability in an electrocatalytic hydrogen evolution reaction in alkaline media compared to defect-free Rh@Pt core–shell nanoplates and commercial Pt/C. This work provides new insights for the design and synthesis of 2D nanoheterostructures with abundant surface active sites for efficient and durable electrocatalysis.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"25 8","pages":"3212–3220 3212–3220"},"PeriodicalIF":9.1000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Undercoordinated Two-Dimensional Pt Nanoring Stabilized by a Ring-on-Sheet Nanoheterostructure for Highly Efficient Alkaline Hydrogen Evolution Reaction\",\"authors\":\"Chen Ma,&nbsp;Weiwei Chen,&nbsp;Yanjie Wu,&nbsp;Wenbin Wang,&nbsp;Lei Xu,&nbsp;Changsheng Chen,&nbsp;Long Zheng,&nbsp;Gang Wang,&nbsp;Peng Han,&nbsp;Ping Gu,&nbsp;Xiao Wang,&nbsp;Ye Zhu,&nbsp;Zhiyuan Zeng,&nbsp;Hongyan He,&nbsp;Qiyuan He*,&nbsp;Zhihai Ke*,&nbsp;Dong Su* and Ye Chen*,&nbsp;\",\"doi\":\"10.1021/acs.nanolett.4c0583310.1021/acs.nanolett.4c05833\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Platinum (Pt) is a state-of-the-art electrocatalyst for green hydrogen production in alkaline electrolytes. The delicate design and fabrication of two-dimensional (2D) Pt nanocatalysts can significantly enhance atomic utilization efficiency, while further improving intrinsic catalytic performance by modulating the density of surface active sites. However, the high surface energy and morphology complexity of 2D nanostructures often result in poor structural stability under the working conditions. Here, we report the synthesis of a 2D ring-on-sheet nanoheterostructure featuring abundant low-coordination Pt sites in which a defect-rich Pt nanoring is stabilized by an ultrathin 2D rhodium (Rh) support. The Rh@Pt nanoring exhibits remarkably enhanced activity and stability in an electrocatalytic hydrogen evolution reaction in alkaline media compared to defect-free Rh@Pt core–shell nanoplates and commercial Pt/C. This work provides new insights for the design and synthesis of 2D nanoheterostructures with abundant surface active sites for efficient and durable electrocatalysis.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"25 8\",\"pages\":\"3212–3220 3212–3220\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.nanolett.4c05833\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.4c05833","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

铂(Pt)是碱性电解质中绿色制氢的最先进的电催化剂。二维(2D) Pt纳米催化剂的精细设计和制造可以显著提高原子利用率,同时通过调节表面活性位点的密度进一步提高内在催化性能。然而,二维纳米结构的高表面能和复杂的形貌往往导致其在工作条件下的结构稳定性较差。在这里,我们报道了一种具有丰富的低配位Pt位点的二维环片纳米异质结构的合成,其中富含缺陷的Pt纳米环被超薄的二维铑(Rh)载体稳定。与无缺陷的Rh@Pt核壳纳米板和商用Pt/C相比,Rh@Pt纳米环在碱性介质中电催化析氢反应中表现出显著增强的活性和稳定性。这项工作为设计和合成具有丰富表面活性位点的二维纳米异质结构提供了新的见解,以实现高效和持久的电催化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Undercoordinated Two-Dimensional Pt Nanoring Stabilized by a Ring-on-Sheet Nanoheterostructure for Highly Efficient Alkaline Hydrogen Evolution Reaction

Undercoordinated Two-Dimensional Pt Nanoring Stabilized by a Ring-on-Sheet Nanoheterostructure for Highly Efficient Alkaline Hydrogen Evolution Reaction

Platinum (Pt) is a state-of-the-art electrocatalyst for green hydrogen production in alkaline electrolytes. The delicate design and fabrication of two-dimensional (2D) Pt nanocatalysts can significantly enhance atomic utilization efficiency, while further improving intrinsic catalytic performance by modulating the density of surface active sites. However, the high surface energy and morphology complexity of 2D nanostructures often result in poor structural stability under the working conditions. Here, we report the synthesis of a 2D ring-on-sheet nanoheterostructure featuring abundant low-coordination Pt sites in which a defect-rich Pt nanoring is stabilized by an ultrathin 2D rhodium (Rh) support. The Rh@Pt nanoring exhibits remarkably enhanced activity and stability in an electrocatalytic hydrogen evolution reaction in alkaline media compared to defect-free Rh@Pt core–shell nanoplates and commercial Pt/C. This work provides new insights for the design and synthesis of 2D nanoheterostructures with abundant surface active sites for efficient and durable electrocatalysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信