原子薄极性氮化物量子阱中的电荷转移激子

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Woncheol Lee*, Yuanpeng Wu, Matthias Florian, Zetian Mi, Mackillo Kira and Emmanouil Kioupakis, 
{"title":"原子薄极性氮化物量子阱中的电荷转移激子","authors":"Woncheol Lee*,&nbsp;Yuanpeng Wu,&nbsp;Matthias Florian,&nbsp;Zetian Mi,&nbsp;Mackillo Kira and Emmanouil Kioupakis,&nbsp;","doi":"10.1021/acs.nanolett.4c0459310.1021/acs.nanolett.4c04593","DOIUrl":null,"url":null,"abstract":"<p >Due to their extended lifetimes relative to those of spatially direct excitons (DXs), spatially indirect excitons (IXs) open new avenues for exploring excitonic devices and fundamental excitonic phenomena. Atomically thin nitride quantum heterostructures are a promising platform for realizing strongly bound IXs because they exhibit large exciton binding energies due to extreme quantum confinement and a strong polarization field. We apply first-principles calculations to investigate the properties of excitons in pairs of atomically thin GaN quantum wells separated by polar AlN layers with varying thicknesses. We show that the degree of electron–hole interaction and exciton character (IX or DX) can be controlled by changing the AlN barrier thickness and polarization, enabling IXs with radiative decay rates significantly lower than those of DXs. Our theoretical findings predict the feasibility of room-temperature-stable excitons in a commercial semiconductor platform. Furthermore, we present the first experimental results that demonstrate the successful growth of these atomically thin nitride heterostructures.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"25 8","pages":"3045–3052 3045–3052"},"PeriodicalIF":9.1000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Charge-Transfer Excitons in Coupled Atomically Thin Polar Nitride Quantum Wells\",\"authors\":\"Woncheol Lee*,&nbsp;Yuanpeng Wu,&nbsp;Matthias Florian,&nbsp;Zetian Mi,&nbsp;Mackillo Kira and Emmanouil Kioupakis,&nbsp;\",\"doi\":\"10.1021/acs.nanolett.4c0459310.1021/acs.nanolett.4c04593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Due to their extended lifetimes relative to those of spatially direct excitons (DXs), spatially indirect excitons (IXs) open new avenues for exploring excitonic devices and fundamental excitonic phenomena. Atomically thin nitride quantum heterostructures are a promising platform for realizing strongly bound IXs because they exhibit large exciton binding energies due to extreme quantum confinement and a strong polarization field. We apply first-principles calculations to investigate the properties of excitons in pairs of atomically thin GaN quantum wells separated by polar AlN layers with varying thicknesses. We show that the degree of electron–hole interaction and exciton character (IX or DX) can be controlled by changing the AlN barrier thickness and polarization, enabling IXs with radiative decay rates significantly lower than those of DXs. Our theoretical findings predict the feasibility of room-temperature-stable excitons in a commercial semiconductor platform. Furthermore, we present the first experimental results that demonstrate the successful growth of these atomically thin nitride heterostructures.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"25 8\",\"pages\":\"3045–3052 3045–3052\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.nanolett.4c04593\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.4c04593","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

空间间接激子由于其相对于空间直接激子(DXs)的寿命更长,为探索激子器件和基本激子现象开辟了新的途径。原子薄氮化物量子异质结构由于极端量子约束和强极化场而具有较大的激子结合能,是实现强束缚IXs的理想平台。我们应用第一性原理计算来研究由不同厚度的极性AlN层分隔的原子薄GaN量子阱对中的激子的性质。我们发现,电子-空穴相互作用的程度和激子特性(IX或DX)可以通过改变AlN势垒厚度和极化来控制,从而使IXs的辐射衰减率明显低于DXs。我们的理论发现预测了在商业半导体平台中室温稳定激子的可行性。此外,我们提出了第一个实验结果,证明了这些原子薄氮化物异质结构的成功生长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Charge-Transfer Excitons in Coupled Atomically Thin Polar Nitride Quantum Wells

Charge-Transfer Excitons in Coupled Atomically Thin Polar Nitride Quantum Wells

Due to their extended lifetimes relative to those of spatially direct excitons (DXs), spatially indirect excitons (IXs) open new avenues for exploring excitonic devices and fundamental excitonic phenomena. Atomically thin nitride quantum heterostructures are a promising platform for realizing strongly bound IXs because they exhibit large exciton binding energies due to extreme quantum confinement and a strong polarization field. We apply first-principles calculations to investigate the properties of excitons in pairs of atomically thin GaN quantum wells separated by polar AlN layers with varying thicknesses. We show that the degree of electron–hole interaction and exciton character (IX or DX) can be controlled by changing the AlN barrier thickness and polarization, enabling IXs with radiative decay rates significantly lower than those of DXs. Our theoretical findings predict the feasibility of room-temperature-stable excitons in a commercial semiconductor platform. Furthermore, we present the first experimental results that demonstrate the successful growth of these atomically thin nitride heterostructures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信