富电荷生物分子凝聚物中静电力的化学信息粗粒化

IF 10.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Andrés R. Tejedor, Anne Aguirre Gonzalez, M. Julia Maristany, Pin Yu Chew, Kieran Russell, Jorge Ramirez, Jorge R. Espinosa* and Rosana Collepardo-Guevara*, 
{"title":"富电荷生物分子凝聚物中静电力的化学信息粗粒化","authors":"Andrés R. Tejedor,&nbsp;Anne Aguirre Gonzalez,&nbsp;M. Julia Maristany,&nbsp;Pin Yu Chew,&nbsp;Kieran Russell,&nbsp;Jorge Ramirez,&nbsp;Jorge R. Espinosa* and Rosana Collepardo-Guevara*,&nbsp;","doi":"10.1021/acscentsci.4c0161710.1021/acscentsci.4c01617","DOIUrl":null,"url":null,"abstract":"<p >Biomolecular condensates composed of highly charged biomolecules, such as DNA, RNA, chromatin, and nucleic-acid binding proteins, are ubiquitous in the cell nucleus. The biophysical properties of these charge-rich condensates are largely regulated by electrostatic interactions. Residue-resolution coarse-grained models that describe solvent and ions implicitly are widely used to gain mechanistic insights into the biophysical properties of condensates, offering transferability, computational efficiency, and accurate predictions for multiple systems. However, their predictive accuracy diminishes for charge-rich condensates due to the implicit treatment of solvent and ions. Here, we present Mpipi-Recharged, a residue-resolution coarse-grained model that improves the description of charge effects in biomolecular condensates containing disordered proteins, multidomain proteins, and/or disordered single-stranded RNAs. Mpipi-Recharged introduces a pair-specific asymmetric Yukawa electrostatic potential, informed by atomistic simulations. We show that this asymmetric coarse-graining of electrostatic forces captures intricate effects, such as charge blockiness, stoichiometry variations in complex coacervates, and modulation of salt concentration, without requiring explicit solvation. Mpipi-Recharged provides excellent agreement with experiments in predicting the phase behavior of highly charged condensates. Overall, Mpipi-Recharged improves the computational tools available to investigate the physicochemical mechanisms regulating biomolecular condensates, enhancing the scope of computer simulations in this field.</p><p >Mpipi-Recharged is a residue-resolution coarse-grained model that innovatively treats screened electrostatic interactions, improving predictions for charged biomolecular condensates and ensuring computational efficiency.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"11 2","pages":"302–321 302–321"},"PeriodicalIF":10.4000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acscentsci.4c01617","citationCount":"0","resultStr":"{\"title\":\"Chemically Informed Coarse-Graining of Electrostatic Forces in Charge-Rich Biomolecular Condensates\",\"authors\":\"Andrés R. Tejedor,&nbsp;Anne Aguirre Gonzalez,&nbsp;M. Julia Maristany,&nbsp;Pin Yu Chew,&nbsp;Kieran Russell,&nbsp;Jorge Ramirez,&nbsp;Jorge R. Espinosa* and Rosana Collepardo-Guevara*,&nbsp;\",\"doi\":\"10.1021/acscentsci.4c0161710.1021/acscentsci.4c01617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Biomolecular condensates composed of highly charged biomolecules, such as DNA, RNA, chromatin, and nucleic-acid binding proteins, are ubiquitous in the cell nucleus. The biophysical properties of these charge-rich condensates are largely regulated by electrostatic interactions. Residue-resolution coarse-grained models that describe solvent and ions implicitly are widely used to gain mechanistic insights into the biophysical properties of condensates, offering transferability, computational efficiency, and accurate predictions for multiple systems. However, their predictive accuracy diminishes for charge-rich condensates due to the implicit treatment of solvent and ions. Here, we present Mpipi-Recharged, a residue-resolution coarse-grained model that improves the description of charge effects in biomolecular condensates containing disordered proteins, multidomain proteins, and/or disordered single-stranded RNAs. Mpipi-Recharged introduces a pair-specific asymmetric Yukawa electrostatic potential, informed by atomistic simulations. We show that this asymmetric coarse-graining of electrostatic forces captures intricate effects, such as charge blockiness, stoichiometry variations in complex coacervates, and modulation of salt concentration, without requiring explicit solvation. Mpipi-Recharged provides excellent agreement with experiments in predicting the phase behavior of highly charged condensates. Overall, Mpipi-Recharged improves the computational tools available to investigate the physicochemical mechanisms regulating biomolecular condensates, enhancing the scope of computer simulations in this field.</p><p >Mpipi-Recharged is a residue-resolution coarse-grained model that innovatively treats screened electrostatic interactions, improving predictions for charged biomolecular condensates and ensuring computational efficiency.</p>\",\"PeriodicalId\":10,\"journal\":{\"name\":\"ACS Central Science\",\"volume\":\"11 2\",\"pages\":\"302–321 302–321\"},\"PeriodicalIF\":10.4000,\"publicationDate\":\"2025-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acscentsci.4c01617\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Central Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acscentsci.4c01617\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Central Science","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscentsci.4c01617","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由高电荷的生物分子组成的生物分子凝聚物,如DNA、RNA、染色质和核酸结合蛋白,在细胞核中无处不在。这些富电荷凝析物的生物物理性质在很大程度上受静电相互作用的调节。残差分辨率粗粒度模型隐含地描述溶剂和离子,广泛用于获得凝聚物生物物理特性的机理见解,提供可转移性、计算效率和对多个系统的准确预测。然而,由于溶剂和离子的隐式处理,它们对富电荷凝析油的预测精度降低。在这里,我们提出了mpipi - recharge,这是一种残基分辨率的粗粒度模型,可以改善对含有无序蛋白、多结构域蛋白和/或无序单链rna的生物分子凝聚物中的电荷效应的描述。mpipi -充电引入了一个对特定的不对称汤川静电势,由原子模拟告知。我们表明,这种不对称的静电力粗粒化捕获了复杂的效应,如电荷块性、复杂凝聚中的化学计量变化和盐浓度的调制,而不需要显式的溶剂化。mpipi - recharge在预测高荷电凝析油的相行为方面与实验结果非常吻合。总的来说,mpipi - recharge改进了研究生物分子凝聚物的物理化学机制的计算工具,扩大了该领域计算机模拟的范围。mpipi - recharge是一种残留物分辨率的粗粒度模型,创新地处理筛选的静电相互作用,改进了带电生物分子凝聚物的预测,并确保了计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chemically Informed Coarse-Graining of Electrostatic Forces in Charge-Rich Biomolecular Condensates

Biomolecular condensates composed of highly charged biomolecules, such as DNA, RNA, chromatin, and nucleic-acid binding proteins, are ubiquitous in the cell nucleus. The biophysical properties of these charge-rich condensates are largely regulated by electrostatic interactions. Residue-resolution coarse-grained models that describe solvent and ions implicitly are widely used to gain mechanistic insights into the biophysical properties of condensates, offering transferability, computational efficiency, and accurate predictions for multiple systems. However, their predictive accuracy diminishes for charge-rich condensates due to the implicit treatment of solvent and ions. Here, we present Mpipi-Recharged, a residue-resolution coarse-grained model that improves the description of charge effects in biomolecular condensates containing disordered proteins, multidomain proteins, and/or disordered single-stranded RNAs. Mpipi-Recharged introduces a pair-specific asymmetric Yukawa electrostatic potential, informed by atomistic simulations. We show that this asymmetric coarse-graining of electrostatic forces captures intricate effects, such as charge blockiness, stoichiometry variations in complex coacervates, and modulation of salt concentration, without requiring explicit solvation. Mpipi-Recharged provides excellent agreement with experiments in predicting the phase behavior of highly charged condensates. Overall, Mpipi-Recharged improves the computational tools available to investigate the physicochemical mechanisms regulating biomolecular condensates, enhancing the scope of computer simulations in this field.

Mpipi-Recharged is a residue-resolution coarse-grained model that innovatively treats screened electrostatic interactions, improving predictions for charged biomolecular condensates and ensuring computational efficiency.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Central Science
ACS Central Science Chemical Engineering-General Chemical Engineering
CiteScore
25.50
自引率
0.50%
发文量
194
审稿时长
10 weeks
期刊介绍: ACS Central Science publishes significant primary reports on research in chemistry and allied fields where chemical approaches are pivotal. As the first fully open-access journal by the American Chemical Society, it covers compelling and important contributions to the broad chemistry and scientific community. "Central science," a term popularized nearly 40 years ago, emphasizes chemistry's central role in connecting physical and life sciences, and fundamental sciences with applied disciplines like medicine and engineering. The journal focuses on exceptional quality articles, addressing advances in fundamental chemistry and interdisciplinary research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信