离子液体诱导的长寿命全天候锌离子电池的静态和动态界面双屏蔽

IF 26.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Meijia Qiu, Yijia Xin, Yuxuan Liang, Yongtao Liu, Jinguo Chen, Jinliang Li, Peng Sun, Hong Jin Fan, Wenjie Mai
{"title":"离子液体诱导的长寿命全天候锌离子电池的静态和动态界面双屏蔽","authors":"Meijia Qiu,&nbsp;Yijia Xin,&nbsp;Yuxuan Liang,&nbsp;Yongtao Liu,&nbsp;Jinguo Chen,&nbsp;Jinliang Li,&nbsp;Peng Sun,&nbsp;Hong Jin Fan,&nbsp;Wenjie Mai","doi":"10.1002/adma.202418947","DOIUrl":null,"url":null,"abstract":"<p>Aqueous Zn-ion batteries (ZIBs) have experienced substantial advancements recently, while the aqueous electrolytes exhibit limited thermal adaptability. The low-cost Zn(BF<sub>4</sub>)<sub>2</sub> salt possesses potential low-temperature application, while brings unsatisfied stability of Zn anodes. To address this challenge, an ionic liquid based eutectic electrolyte (ILEE) utilizing the Zn(BF<sub>4</sub>)<sub>2</sub> presenting remarkable stability across a temperature range of ≈−100–150 °C is developed, enabling ZIBs to operate in diverse thermal conditions. The inner Zn<sup>2+</sup> solvation structure can be modulated to a BF<sub>4</sub><sup>−</sup>-rich state within the ILEE system, forming a static ZnF₂ layer at the electrolyte-Zn anode interface, as evidenced by <i>ab initial</i> molecular dynamic simulations. Moreover, the positively charged EMIM<sup>+</sup> can accumulate on the Zn anodes to form the secondary electrostatic dynamic shield that mitigates the uncontrollable Zn dendrites growth, enhancing the overall cycling life of Zn anodes to over 10 times compared with the pure Zn(BF<sub>4</sub>)<sub>2</sub> system. When utilizing the ILEE as the electrolyte, PANI||Zn full cells demonstrate acceptable performances under the all-temperature environments, especially presenting a long life of over 9500 cycles at a low temperature of −40 °C and 500 cycles at a high temperature of 60 °C. This special ILEE holds significant promise for future aqueous batteries in extreme environment.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"37 14","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ionic Liquid Induced Static and Dynamic Interface Double Shields for Long-Lifespan All-Temperature Zn-Ion Batteries\",\"authors\":\"Meijia Qiu,&nbsp;Yijia Xin,&nbsp;Yuxuan Liang,&nbsp;Yongtao Liu,&nbsp;Jinguo Chen,&nbsp;Jinliang Li,&nbsp;Peng Sun,&nbsp;Hong Jin Fan,&nbsp;Wenjie Mai\",\"doi\":\"10.1002/adma.202418947\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Aqueous Zn-ion batteries (ZIBs) have experienced substantial advancements recently, while the aqueous electrolytes exhibit limited thermal adaptability. The low-cost Zn(BF<sub>4</sub>)<sub>2</sub> salt possesses potential low-temperature application, while brings unsatisfied stability of Zn anodes. To address this challenge, an ionic liquid based eutectic electrolyte (ILEE) utilizing the Zn(BF<sub>4</sub>)<sub>2</sub> presenting remarkable stability across a temperature range of ≈−100–150 °C is developed, enabling ZIBs to operate in diverse thermal conditions. The inner Zn<sup>2+</sup> solvation structure can be modulated to a BF<sub>4</sub><sup>−</sup>-rich state within the ILEE system, forming a static ZnF₂ layer at the electrolyte-Zn anode interface, as evidenced by <i>ab initial</i> molecular dynamic simulations. Moreover, the positively charged EMIM<sup>+</sup> can accumulate on the Zn anodes to form the secondary electrostatic dynamic shield that mitigates the uncontrollable Zn dendrites growth, enhancing the overall cycling life of Zn anodes to over 10 times compared with the pure Zn(BF<sub>4</sub>)<sub>2</sub> system. When utilizing the ILEE as the electrolyte, PANI||Zn full cells demonstrate acceptable performances under the all-temperature environments, especially presenting a long life of over 9500 cycles at a low temperature of −40 °C and 500 cycles at a high temperature of 60 °C. This special ILEE holds significant promise for future aqueous batteries in extreme environment.</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"37 14\",\"pages\":\"\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2025-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adma.202418947\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202418947","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

含水锌离子电池(zib)最近取得了长足的进步,但含水电解质表现出有限的热适应性。低成本的Zn(BF4)2盐具有低温应用潜力,但锌阳极稳定性不理想。为了解决这一挑战,研究人员开发了一种基于离子液体的共晶电解质(ILEE),该电解质利用Zn(BF4)2在≈−100-150°C的温度范围内表现出卓越的稳定性,使ZIBs能够在不同的热条件下工作。初始分子动力学模拟结果表明,ILEE体系内部的Zn2+溶剂化结构可被调节为富BF4−状态,在电解质- zn阳极界面处形成静态ZnF 2层。此外,带正电的EMIM+可以在Zn阳极上积累形成二次静电动态屏蔽,减轻了不可控的Zn枝晶生长,使Zn阳极的整体循环寿命比纯Zn(BF4)2体系提高了10倍以上。当使用ILEE作为电解液时,PANI||Zn满电池在所有温度环境下都表现出良好的性能,特别是在- 40°C的低温和60°C的高温下表现出超过9500次循环的长寿命。这种特殊的ILEE对未来极端环境下的水电池具有重要的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ionic Liquid Induced Static and Dynamic Interface Double Shields for Long-Lifespan All-Temperature Zn-Ion Batteries

Ionic Liquid Induced Static and Dynamic Interface Double Shields for Long-Lifespan All-Temperature Zn-Ion Batteries

Aqueous Zn-ion batteries (ZIBs) have experienced substantial advancements recently, while the aqueous electrolytes exhibit limited thermal adaptability. The low-cost Zn(BF4)2 salt possesses potential low-temperature application, while brings unsatisfied stability of Zn anodes. To address this challenge, an ionic liquid based eutectic electrolyte (ILEE) utilizing the Zn(BF4)2 presenting remarkable stability across a temperature range of ≈−100–150 °C is developed, enabling ZIBs to operate in diverse thermal conditions. The inner Zn2+ solvation structure can be modulated to a BF4-rich state within the ILEE system, forming a static ZnF₂ layer at the electrolyte-Zn anode interface, as evidenced by ab initial molecular dynamic simulations. Moreover, the positively charged EMIM+ can accumulate on the Zn anodes to form the secondary electrostatic dynamic shield that mitigates the uncontrollable Zn dendrites growth, enhancing the overall cycling life of Zn anodes to over 10 times compared with the pure Zn(BF4)2 system. When utilizing the ILEE as the electrolyte, PANI||Zn full cells demonstrate acceptable performances under the all-temperature environments, especially presenting a long life of over 9500 cycles at a low temperature of −40 °C and 500 cycles at a high temperature of 60 °C. This special ILEE holds significant promise for future aqueous batteries in extreme environment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信