Penghui Du, Biwei Yang, Alex Tat-Shing Chow, Dongliang Shi, Keith Man-Chung Wong, Junjian Wang
{"title":"从猝灭剂到促进剂:重新审视2,4,6-三甲基苯酚(TMP)在溶解有机物三态光化学中的作用","authors":"Penghui Du, Biwei Yang, Alex Tat-Shing Chow, Dongliang Shi, Keith Man-Chung Wong, Junjian Wang","doi":"10.1021/acs.est.4c09859","DOIUrl":null,"url":null,"abstract":"Triplet-state dissolved organic matter (<sup>3</sup>DOM*) plays a crucial role in environmental aquatic photochemistry, with 2,4,6-trimethylphenol (TMP) frequently used as a chemical probe or quencher due to its high reactivity with <sup>3</sup>DOM*. However, the influence of TMP-derived oxidation intermediates on the target photochemical reactions has not been comprehensively examined. This study investigated TMP’s effect on the photolysis of sulfamethoxazole (SMX), a common antibiotic found in natural waters, in the presence of different DOM sources or model photosensitizer. Contrary to expectation, TMP significantly accelerated SMX photolysis, with the extent of enhancement depending on TMP and DOM concentrations. Laser flash photolysis and kinetic modeling suggested the long-lived TMP-derived reactive species (TMP-RS), including phenoxyl radicals, semiquinone radicals, and quinones, as the key factors in this process. Unlike <sup>3</sup>DOM*, TMP-RS may react with SMX with the formation of non-SMX<sup>•+</sup> intermediates. This process prevents the reduction of SMX<sup>•+</sup> and the subsequent regeneration of SMX. The kinetic model successfully predicts the dynamic contributions of various factors to SMX oxidation during the reaction, highlighting the critical role of TMP-RS. This study advances our understanding of TMP’s involvement in triplet-state photochemistry and suggests a reconsideration of the role long-lived organic RSs play in the transformation of environmental micropollutants.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"9 1","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From Quencher to Promoter: Revisiting the Role of 2,4,6-Trimethylphenol (TMP) in Triplet-State Photochemistry of Dissolved Organic Matter\",\"authors\":\"Penghui Du, Biwei Yang, Alex Tat-Shing Chow, Dongliang Shi, Keith Man-Chung Wong, Junjian Wang\",\"doi\":\"10.1021/acs.est.4c09859\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Triplet-state dissolved organic matter (<sup>3</sup>DOM*) plays a crucial role in environmental aquatic photochemistry, with 2,4,6-trimethylphenol (TMP) frequently used as a chemical probe or quencher due to its high reactivity with <sup>3</sup>DOM*. However, the influence of TMP-derived oxidation intermediates on the target photochemical reactions has not been comprehensively examined. This study investigated TMP’s effect on the photolysis of sulfamethoxazole (SMX), a common antibiotic found in natural waters, in the presence of different DOM sources or model photosensitizer. Contrary to expectation, TMP significantly accelerated SMX photolysis, with the extent of enhancement depending on TMP and DOM concentrations. Laser flash photolysis and kinetic modeling suggested the long-lived TMP-derived reactive species (TMP-RS), including phenoxyl radicals, semiquinone radicals, and quinones, as the key factors in this process. Unlike <sup>3</sup>DOM*, TMP-RS may react with SMX with the formation of non-SMX<sup>•+</sup> intermediates. This process prevents the reduction of SMX<sup>•+</sup> and the subsequent regeneration of SMX. The kinetic model successfully predicts the dynamic contributions of various factors to SMX oxidation during the reaction, highlighting the critical role of TMP-RS. This study advances our understanding of TMP’s involvement in triplet-state photochemistry and suggests a reconsideration of the role long-lived organic RSs play in the transformation of environmental micropollutants.\",\"PeriodicalId\":36,\"journal\":{\"name\":\"环境科学与技术\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2025-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"环境科学与技术\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.est.4c09859\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c09859","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
From Quencher to Promoter: Revisiting the Role of 2,4,6-Trimethylphenol (TMP) in Triplet-State Photochemistry of Dissolved Organic Matter
Triplet-state dissolved organic matter (3DOM*) plays a crucial role in environmental aquatic photochemistry, with 2,4,6-trimethylphenol (TMP) frequently used as a chemical probe or quencher due to its high reactivity with 3DOM*. However, the influence of TMP-derived oxidation intermediates on the target photochemical reactions has not been comprehensively examined. This study investigated TMP’s effect on the photolysis of sulfamethoxazole (SMX), a common antibiotic found in natural waters, in the presence of different DOM sources or model photosensitizer. Contrary to expectation, TMP significantly accelerated SMX photolysis, with the extent of enhancement depending on TMP and DOM concentrations. Laser flash photolysis and kinetic modeling suggested the long-lived TMP-derived reactive species (TMP-RS), including phenoxyl radicals, semiquinone radicals, and quinones, as the key factors in this process. Unlike 3DOM*, TMP-RS may react with SMX with the formation of non-SMX•+ intermediates. This process prevents the reduction of SMX•+ and the subsequent regeneration of SMX. The kinetic model successfully predicts the dynamic contributions of various factors to SMX oxidation during the reaction, highlighting the critical role of TMP-RS. This study advances our understanding of TMP’s involvement in triplet-state photochemistry and suggests a reconsideration of the role long-lived organic RSs play in the transformation of environmental micropollutants.
期刊介绍:
Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences.
Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.