血流动力学紊乱和mTORC1激活:揭示马凡氏综合征胸主动脉瘤的生物力学发病机制。

Journal of pharmaceutical analysis Pub Date : 2025-02-01 Epub Date: 2024-10-28 DOI:10.1016/j.jpha.2024.101120
Ming-Yuan Liu, Meili Wang, Junjun Liu, An-Qiang Sun, Chang-Shun He, Xin Cong, Wei Kong, Wei Li
{"title":"血流动力学紊乱和mTORC1激活:揭示马凡氏综合征胸主动脉瘤的生物力学发病机制。","authors":"Ming-Yuan Liu, Meili Wang, Junjun Liu, An-Qiang Sun, Chang-Shun He, Xin Cong, Wei Kong, Wei Li","doi":"10.1016/j.jpha.2024.101120","DOIUrl":null,"url":null,"abstract":"<p><p>Thoracic aortic aneurysm (TAA) significantly endangers the lives of individuals with Marfan syndrome (MFS), yet the intricacies of their biomechanical origins remain elusive. Our investigation delves into the pivotal role of hemodynamic disturbance in the pathogenesis of TAA, with a particular emphasis on the mechanistic contributions of the mammalian target of rapamycin (mTOR) signaling cascade. We uncovered that activation of the mTOR complex 1 (mTORC1) within smooth muscle cells, instigated by the oscillatory wall shear stress (OSS) that stems from disturbed flow (DF), is a catalyst for TAA progression. This revelation was corroborated through both an MFS mouse model (<i>Fbn1</i> <sup>+/C1039G</sup>) and clinical MFS specimens. Crucially, our research demonstrates a direct linkage between the activation of the mTORC1 pathway and the intensity in OSS. Therapeutic administration of rapamycin suppresses mTORC1 activity, leading to the attenuation of aberrant SMC behavior, reduced inflammatory infiltration, and restoration of extracellular matrix integrity-collectively decelerating TAA advancement in our mouse model. These insights posit the mTORC1 axis as a strategic target for intervention, offering a novel approach to manage TAAs in MFS and potentially pave insights for current treatment paradigms.</p>","PeriodicalId":94338,"journal":{"name":"Journal of pharmaceutical analysis","volume":"15 2","pages":"101120"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11847113/pdf/","citationCount":"0","resultStr":"{\"title\":\"Hemodynamic disturbance and mTORC1 activation: Unveiling the biomechanical pathogenesis of thoracic aortic aneurysms in Marfan syndrome.\",\"authors\":\"Ming-Yuan Liu, Meili Wang, Junjun Liu, An-Qiang Sun, Chang-Shun He, Xin Cong, Wei Kong, Wei Li\",\"doi\":\"10.1016/j.jpha.2024.101120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Thoracic aortic aneurysm (TAA) significantly endangers the lives of individuals with Marfan syndrome (MFS), yet the intricacies of their biomechanical origins remain elusive. Our investigation delves into the pivotal role of hemodynamic disturbance in the pathogenesis of TAA, with a particular emphasis on the mechanistic contributions of the mammalian target of rapamycin (mTOR) signaling cascade. We uncovered that activation of the mTOR complex 1 (mTORC1) within smooth muscle cells, instigated by the oscillatory wall shear stress (OSS) that stems from disturbed flow (DF), is a catalyst for TAA progression. This revelation was corroborated through both an MFS mouse model (<i>Fbn1</i> <sup>+/C1039G</sup>) and clinical MFS specimens. Crucially, our research demonstrates a direct linkage between the activation of the mTORC1 pathway and the intensity in OSS. Therapeutic administration of rapamycin suppresses mTORC1 activity, leading to the attenuation of aberrant SMC behavior, reduced inflammatory infiltration, and restoration of extracellular matrix integrity-collectively decelerating TAA advancement in our mouse model. These insights posit the mTORC1 axis as a strategic target for intervention, offering a novel approach to manage TAAs in MFS and potentially pave insights for current treatment paradigms.</p>\",\"PeriodicalId\":94338,\"journal\":{\"name\":\"Journal of pharmaceutical analysis\",\"volume\":\"15 2\",\"pages\":\"101120\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11847113/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of pharmaceutical analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jpha.2024.101120\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmaceutical analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jpha.2024.101120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/28 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

胸主动脉瘤(TAA)严重危及马凡综合征(MFS)患者的生命,但其生物力学起源的复杂性仍然难以捉摸。我们的研究深入探讨了血流动力学紊乱在TAA发病机制中的关键作用,特别强调了雷帕霉素(mTOR)信号级联的哺乳动物靶点的机制贡献。我们发现,平滑肌细胞内mTOR复合物1 (mTORC1)的激活是由振荡壁剪切应力(OSS)引起的,这是TAA进展的催化剂。这一发现通过MFS小鼠模型(Fbn1 +/C1039G)和临床MFS标本得到证实。至关重要的是,我们的研究表明mTORC1通路的激活与OSS的强度之间存在直接联系。在我们的小鼠模型中,治疗性给予雷帕霉素抑制mTORC1活性,导致异常SMC行为的衰减,炎症浸润的减少和细胞外基质完整性的恢复-共同减缓TAA的进展。这些见解将mTORC1轴作为干预的战略目标,提供了一种管理MFS中taa的新方法,并可能为当前的治疗范例铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hemodynamic disturbance and mTORC1 activation: Unveiling the biomechanical pathogenesis of thoracic aortic aneurysms in Marfan syndrome.

Thoracic aortic aneurysm (TAA) significantly endangers the lives of individuals with Marfan syndrome (MFS), yet the intricacies of their biomechanical origins remain elusive. Our investigation delves into the pivotal role of hemodynamic disturbance in the pathogenesis of TAA, with a particular emphasis on the mechanistic contributions of the mammalian target of rapamycin (mTOR) signaling cascade. We uncovered that activation of the mTOR complex 1 (mTORC1) within smooth muscle cells, instigated by the oscillatory wall shear stress (OSS) that stems from disturbed flow (DF), is a catalyst for TAA progression. This revelation was corroborated through both an MFS mouse model (Fbn1 +/C1039G) and clinical MFS specimens. Crucially, our research demonstrates a direct linkage between the activation of the mTORC1 pathway and the intensity in OSS. Therapeutic administration of rapamycin suppresses mTORC1 activity, leading to the attenuation of aberrant SMC behavior, reduced inflammatory infiltration, and restoration of extracellular matrix integrity-collectively decelerating TAA advancement in our mouse model. These insights posit the mTORC1 axis as a strategic target for intervention, offering a novel approach to manage TAAs in MFS and potentially pave insights for current treatment paradigms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信