深度学习导出的脂肪细胞大小揭示脂肪细胞肥大受遗传控制。

Emil Jørsboe, Phil Kubitz, Julius Honecker, Andrea Flaccus, Dagmar Mvondo, Matthias Raggi, Craig A Glastonbury, Torben Hansen, Matthias Blüher, Aleksander Krag, Hans Hauner, Philip D Charles, Cecilia M Lindgren, Christoffer Nellåker, Melina Claussnitzer
{"title":"深度学习导出的脂肪细胞大小揭示脂肪细胞肥大受遗传控制。","authors":"Emil Jørsboe, Phil Kubitz, Julius Honecker, Andrea Flaccus, Dagmar Mvondo, Matthias Raggi, Craig A Glastonbury, Torben Hansen, Matthias Blüher, Aleksander Krag, Hans Hauner, Philip D Charles, Cecilia M Lindgren, Christoffer Nellåker, Melina Claussnitzer","doi":"10.1101/2025.02.11.25322053","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>White adipose tissue dysfunction has emerged as a critical factor in cardiometabolic disease development, yet the cellular microstructure and genetic architecture of adipocyte morphology remain poorly explored.</p><p><strong>Methods: </strong>We introduce Adipocyte U-Net 2.0, an advanced deep learning method for the semantic segmentation of adipose tissue histology, enabling analysis of over 27 million adipocytes from 2,667 individuals.</p><p><strong>Findings: </strong>Our approach revealed that adipocyte hypertrophy associates with metabolic dysfunction, including increased fasting glucose, glycated hemoglobin, leptin, and triglycerides, with decreased adiponectin and HDL cholesterol levels. Through the largest genome-wide association study of adipocyte size to date (N <sub>Subcutaneous</sub> = 2,066, N <sub>Visceral</sub> = 1,878), we identified four genome-wide significant loci: two in sex-combined analysis (rs73184721 in <i>NAALADL2</i> and rs200047724 in <i>NRXN3</i> ) and two female-specific variants (rs140503338 and rs11656704 in <i>ULK2</i> ). Notably, these genetic associations showed congruent relationships with cardiometabolic traits, suggesting shared biological mechanisms.</p><p><strong>Interpretation: </strong>Our findings demonstrate the utility of deep learning for adipocyte phenotyping at scale and provide novel insights into the genetic basis of adipocyte morphology and its relationship to metabolic disease.</p>","PeriodicalId":94281,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11844614/pdf/","citationCount":"0","resultStr":"{\"title\":\"Scalable Deep Learning of Histology Images Reveals Genetic and Phenotypic Determinants of Adipocyte Hypertrophy.\",\"authors\":\"Emil Jørsboe, Phil Kubitz, Julius Honecker, Andrea Flaccus, Dagmar Mvondo, Matthias Raggi, Craig A Glastonbury, Torben Hansen, Matthias Blüher, Aleksander Krag, Hans Hauner, Philip D Charles, Cecilia M Lindgren, Christoffer Nellåker, Melina Claussnitzer\",\"doi\":\"10.1101/2025.02.11.25322053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>White adipose tissue dysfunction has emerged as a critical factor in cardiometabolic disease development, yet the cellular microstructure and genetic architecture of adipocyte morphology remain poorly explored.</p><p><strong>Methods: </strong>We introduce Adipocyte U-Net 2.0, an advanced deep learning method for the semantic segmentation of adipose tissue histology, enabling analysis of over 27 million adipocytes from 2,667 individuals.</p><p><strong>Findings: </strong>Our approach revealed that adipocyte hypertrophy associates with metabolic dysfunction, including increased fasting glucose, glycated hemoglobin, leptin, and triglycerides, with decreased adiponectin and HDL cholesterol levels. Through the largest genome-wide association study of adipocyte size to date (N <sub>Subcutaneous</sub> = 2,066, N <sub>Visceral</sub> = 1,878), we identified four genome-wide significant loci: two in sex-combined analysis (rs73184721 in <i>NAALADL2</i> and rs200047724 in <i>NRXN3</i> ) and two female-specific variants (rs140503338 and rs11656704 in <i>ULK2</i> ). Notably, these genetic associations showed congruent relationships with cardiometabolic traits, suggesting shared biological mechanisms.</p><p><strong>Interpretation: </strong>Our findings demonstrate the utility of deep learning for adipocyte phenotyping at scale and provide novel insights into the genetic basis of adipocyte morphology and its relationship to metabolic disease.</p>\",\"PeriodicalId\":94281,\"journal\":{\"name\":\"medRxiv : the preprint server for health sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11844614/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv : the preprint server for health sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2025.02.11.25322053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv : the preprint server for health sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.02.11.25322053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

白色脂肪组织的脂肪分布和宏观结构是预测肥胖相关疾病的重要因素,但白色脂肪组织的细胞微观结构研究较少。为了研究脂肪细胞大小与肥胖相关性状之间的关系,以及它们潜在的疾病驱动遗传关联,我们进行了迄今为止最大的脂肪细胞自动表型研究,将组织学测量和遗传学联系起来。我们引入了基于深度学习的方法,对5个独立队列的皮下和内脏脂肪组织组织学样本(N= 2667)进行可扩展和准确的语义分割,包括来自9000个完整幻灯片图像的数据,超过2700万个脂肪细胞。通过Glastonbury等人的实验验证了脂肪细胞平均大小的估计。我们发现,脂肪细胞肥大与瘦素、空腹血糖、糖化血红蛋白和甘油三酯水平升高以及脂联素和高密度脂蛋白胆固醇水平降低等不良代谢特征相关。我们进行了最大的GWAS (N皮下= 2066,N内脏= 1878)和随后的平均脂肪细胞面积荟萃分析,发现两个全基因组显著位点(rs73184721, rs200047724)分别与内脏和皮下脂肪组织中95%分位脂肪细胞大小增加相关。按性别分层,在女性中,我们发现了两个全基因组显著的基因座,其中一个变体(rs140503338)与皮下脂肪组织中平均脂肪细胞大小增加有关,另一个变体(rs11656704)与内脏脂肪组织中脂肪细胞大小减少95%相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scalable Deep Learning of Histology Images Reveals Genetic and Phenotypic Determinants of Adipocyte Hypertrophy.

Background: White adipose tissue dysfunction has emerged as a critical factor in cardiometabolic disease development, yet the cellular microstructure and genetic architecture of adipocyte morphology remain poorly explored.

Methods: We introduce Adipocyte U-Net 2.0, an advanced deep learning method for the semantic segmentation of adipose tissue histology, enabling analysis of over 27 million adipocytes from 2,667 individuals.

Findings: Our approach revealed that adipocyte hypertrophy associates with metabolic dysfunction, including increased fasting glucose, glycated hemoglobin, leptin, and triglycerides, with decreased adiponectin and HDL cholesterol levels. Through the largest genome-wide association study of adipocyte size to date (N Subcutaneous = 2,066, N Visceral = 1,878), we identified four genome-wide significant loci: two in sex-combined analysis (rs73184721 in NAALADL2 and rs200047724 in NRXN3 ) and two female-specific variants (rs140503338 and rs11656704 in ULK2 ). Notably, these genetic associations showed congruent relationships with cardiometabolic traits, suggesting shared biological mechanisms.

Interpretation: Our findings demonstrate the utility of deep learning for adipocyte phenotyping at scale and provide novel insights into the genetic basis of adipocyte morphology and its relationship to metabolic disease.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信