ipsc衍生的固定分泌肝细胞薄片作为治疗B型血友病的新工具的开发。

IF 7.1 2区 医学 Q1 CELL & TISSUE ENGINEERING
Delger Bayarsaikhan, Govigerel Bayarsaikhan, Jaesuk Lee, Teruo Okano, Kyungsook Kim, Bonghee Lee
{"title":"ipsc衍生的固定分泌肝细胞薄片作为治疗B型血友病的新工具的开发。","authors":"Delger Bayarsaikhan, Govigerel Bayarsaikhan, Jaesuk Lee, Teruo Okano, Kyungsook Kim, Bonghee Lee","doi":"10.1186/s13287-025-04195-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Hemophilia B is an inherited disorder caused by a mutation in the FIX gene, which results in insufficient blood clotting factor IX (FIX) production from hepatocytes. Currently, there are no treatments for hemophilia B patients. The patients should be continuously administrated with clotting factor concentrates 2-3 times a month to prevent bleeding. Therefore, this study aimed to develop an engineered FIX-secreting hepatocyte sheet that can release FIX for an extended period. Within this study, the engineered FIX-secreting hepatocyte sheet was developed by integrating two core technologies, including a gene editing platform to generate FIX-secreting cells and cell sheet technology to improve cell delivery efficacy.</p><p><strong>Methods: </strong>The human FIX gene was inserted into the APOC3 site of iPSCs by CRISPR/Cas9, which secretes the target protein after differentiation into hepatocytes. FIX-secreting hepatocyte sheets were obtained by temperature-responsive polymer grafted cell culture dishes (TRCD). Immunohistochemical and functional tests were performed for hepatocyte-like cells differentiated from FIX KI-iPSCs and wild-type iPSCs (WT-iPSCs). After validating the functional activity and secretion of FIX protein, the engineered hepatocyte-like cell sheets were transplanted to NOD/SCID mice for the in vivo experiments.</p><p><strong>Results: </strong>The insertion of the human FIX gene into the APOC3 site demonstrated a significant increase in FIX secretion in hepatocyte-like cells differentiated from FIX KI-iPSCs compared with those obtained from WT-iPSCs. Among the iPSCs to hepatocyte differentiation stages, the hepatic endoderm stage was most suitable for seeding the cells on TRCD and generating cell sheets by temperature changes from 37<sup>o</sup>C to room temperature when the hepatocyte-like cells have reached maturity. The engineered FIX-secreting cell sheets showed intensive expression of the FIX proteins without losing hepatocyte morphology for 20 days. Furthermore, an in vivo study showed that engineered FIX-secreting cell sheets retained their FIX secretion functions for two weeks, whereas single-cell injected traditionally were barely detected in the experimental animals.</p><p><strong>Conclusions: </strong>The engineered FIX-secreting cell sheets fabricated from functionally improved iPSCs with practical cell delivery tools could be a promising tool for clinically treating Hemophilia B.</p>","PeriodicalId":21876,"journal":{"name":"Stem Cell Research & Therapy","volume":"16 1","pages":"88"},"PeriodicalIF":7.1000,"publicationDate":"2025-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11849234/pdf/","citationCount":"0","resultStr":"{\"title\":\"Development of iPSC-derived FIX-secreting hepatocyte sheet as a novel treatment tool for hemophilia B treatment.\",\"authors\":\"Delger Bayarsaikhan, Govigerel Bayarsaikhan, Jaesuk Lee, Teruo Okano, Kyungsook Kim, Bonghee Lee\",\"doi\":\"10.1186/s13287-025-04195-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Hemophilia B is an inherited disorder caused by a mutation in the FIX gene, which results in insufficient blood clotting factor IX (FIX) production from hepatocytes. Currently, there are no treatments for hemophilia B patients. The patients should be continuously administrated with clotting factor concentrates 2-3 times a month to prevent bleeding. Therefore, this study aimed to develop an engineered FIX-secreting hepatocyte sheet that can release FIX for an extended period. Within this study, the engineered FIX-secreting hepatocyte sheet was developed by integrating two core technologies, including a gene editing platform to generate FIX-secreting cells and cell sheet technology to improve cell delivery efficacy.</p><p><strong>Methods: </strong>The human FIX gene was inserted into the APOC3 site of iPSCs by CRISPR/Cas9, which secretes the target protein after differentiation into hepatocytes. FIX-secreting hepatocyte sheets were obtained by temperature-responsive polymer grafted cell culture dishes (TRCD). Immunohistochemical and functional tests were performed for hepatocyte-like cells differentiated from FIX KI-iPSCs and wild-type iPSCs (WT-iPSCs). After validating the functional activity and secretion of FIX protein, the engineered hepatocyte-like cell sheets were transplanted to NOD/SCID mice for the in vivo experiments.</p><p><strong>Results: </strong>The insertion of the human FIX gene into the APOC3 site demonstrated a significant increase in FIX secretion in hepatocyte-like cells differentiated from FIX KI-iPSCs compared with those obtained from WT-iPSCs. Among the iPSCs to hepatocyte differentiation stages, the hepatic endoderm stage was most suitable for seeding the cells on TRCD and generating cell sheets by temperature changes from 37<sup>o</sup>C to room temperature when the hepatocyte-like cells have reached maturity. The engineered FIX-secreting cell sheets showed intensive expression of the FIX proteins without losing hepatocyte morphology for 20 days. Furthermore, an in vivo study showed that engineered FIX-secreting cell sheets retained their FIX secretion functions for two weeks, whereas single-cell injected traditionally were barely detected in the experimental animals.</p><p><strong>Conclusions: </strong>The engineered FIX-secreting cell sheets fabricated from functionally improved iPSCs with practical cell delivery tools could be a promising tool for clinically treating Hemophilia B.</p>\",\"PeriodicalId\":21876,\"journal\":{\"name\":\"Stem Cell Research & Therapy\",\"volume\":\"16 1\",\"pages\":\"88\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2025-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11849234/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stem Cell Research & Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13287-025-04195-8\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cell Research & Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13287-025-04195-8","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

背景:B型血友病是一种由FIX基因突变引起的遗传性疾病,导致肝细胞凝血因子IX (FIX)产生不足。目前,没有治疗B型血友病的方法。患者应每月连续给予凝血因子浓缩剂2-3次,以防止出血。因此,本研究旨在开发一种工程分泌FIX的肝细胞片,可以长时间释放FIX。在本研究中,通过整合两项核心技术,包括生成fix -分泌细胞的基因编辑平台和提高细胞递送效率的细胞片技术,开发了工程化的fix -分泌肝细胞片。方法:通过CRISPR/Cas9将人FIX基因插入iPSCs的APOC3位点,诱导iPSCs分化为肝细胞后分泌目的蛋白。采用温度响应型聚合物移植细胞培养皿(TRCD)获得分泌固定蛋白的肝细胞片。对FIX KI-iPSCs和野生型iPSCs (WT-iPSCs)分化的肝细胞样细胞进行免疫组化和功能检测。在验证FIX蛋白的功能活性和分泌后,将工程肝细胞样细胞片移植到NOD/SCID小鼠体内进行实验。结果:将人类FIX基因插入APOC3位点后,与WT-iPSCs相比,FIX KI-iPSCs分化的肝细胞样细胞中FIX的分泌显著增加。在多能干细胞向肝细胞分化的阶段中,肝内胚层阶段最适合在肝细胞样细胞成熟后,通过37℃到室温的温度变化,将细胞在TRCD上播种并生成细胞片。工程的FIX分泌细胞片在20天内显示FIX蛋白的密集表达而不失去肝细胞形态。此外,一项体内研究表明,经过改造的分泌FIX的细胞片在两周内保持了其分泌FIX的功能,而传统注射的单细胞片在实验动物中几乎检测不到。结论:利用功能改良的iPSCs和实用的细胞传递工具制备的工程化固定分泌细胞片可能是临床治疗B型血友病的一种有前景的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of iPSC-derived FIX-secreting hepatocyte sheet as a novel treatment tool for hemophilia B treatment.

Background: Hemophilia B is an inherited disorder caused by a mutation in the FIX gene, which results in insufficient blood clotting factor IX (FIX) production from hepatocytes. Currently, there are no treatments for hemophilia B patients. The patients should be continuously administrated with clotting factor concentrates 2-3 times a month to prevent bleeding. Therefore, this study aimed to develop an engineered FIX-secreting hepatocyte sheet that can release FIX for an extended period. Within this study, the engineered FIX-secreting hepatocyte sheet was developed by integrating two core technologies, including a gene editing platform to generate FIX-secreting cells and cell sheet technology to improve cell delivery efficacy.

Methods: The human FIX gene was inserted into the APOC3 site of iPSCs by CRISPR/Cas9, which secretes the target protein after differentiation into hepatocytes. FIX-secreting hepatocyte sheets were obtained by temperature-responsive polymer grafted cell culture dishes (TRCD). Immunohistochemical and functional tests were performed for hepatocyte-like cells differentiated from FIX KI-iPSCs and wild-type iPSCs (WT-iPSCs). After validating the functional activity and secretion of FIX protein, the engineered hepatocyte-like cell sheets were transplanted to NOD/SCID mice for the in vivo experiments.

Results: The insertion of the human FIX gene into the APOC3 site demonstrated a significant increase in FIX secretion in hepatocyte-like cells differentiated from FIX KI-iPSCs compared with those obtained from WT-iPSCs. Among the iPSCs to hepatocyte differentiation stages, the hepatic endoderm stage was most suitable for seeding the cells on TRCD and generating cell sheets by temperature changes from 37oC to room temperature when the hepatocyte-like cells have reached maturity. The engineered FIX-secreting cell sheets showed intensive expression of the FIX proteins without losing hepatocyte morphology for 20 days. Furthermore, an in vivo study showed that engineered FIX-secreting cell sheets retained their FIX secretion functions for two weeks, whereas single-cell injected traditionally were barely detected in the experimental animals.

Conclusions: The engineered FIX-secreting cell sheets fabricated from functionally improved iPSCs with practical cell delivery tools could be a promising tool for clinically treating Hemophilia B.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stem Cell Research & Therapy
Stem Cell Research & Therapy CELL BIOLOGY-MEDICINE, RESEARCH & EXPERIMENTAL
CiteScore
13.20
自引率
8.00%
发文量
525
审稿时长
1 months
期刊介绍: Stem Cell Research & Therapy serves as a leading platform for translational research in stem cell therapies. This international, peer-reviewed journal publishes high-quality open-access research articles, with a focus on basic, translational, and clinical research in stem cell therapeutics and regenerative therapies. Coverage includes animal models and clinical trials. Additionally, the journal offers reviews, viewpoints, commentaries, and reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信