肌肉骨骼成像方面的近期主题侧重于人工智能的临床应用:放射科医生应如何对待和使用人工智能?

IF 9.7 1区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Radiologia Medica Pub Date : 2025-05-01 Epub Date: 2025-02-24 DOI:10.1007/s11547-024-01947-z
Taiki Nozaki, Masahiro Hashimoto, Daiju Ueda, Shohei Fujita, Yasutaka Fushimi, Koji Kamagata, Yusuke Matsui, Rintaro Ito, Takahiro Tsuboyama, Fuminari Tatsugami, Noriyuki Fujima, Kenji Hirata, Masahiro Yanagawa, Akira Yamada, Tomoyuki Fujioka, Mariko Kawamura, Takeshi Nakaura, Shinji Naganawa
{"title":"肌肉骨骼成像方面的近期主题侧重于人工智能的临床应用:放射科医生应如何对待和使用人工智能?","authors":"Taiki Nozaki, Masahiro Hashimoto, Daiju Ueda, Shohei Fujita, Yasutaka Fushimi, Koji Kamagata, Yusuke Matsui, Rintaro Ito, Takahiro Tsuboyama, Fuminari Tatsugami, Noriyuki Fujima, Kenji Hirata, Masahiro Yanagawa, Akira Yamada, Tomoyuki Fujioka, Mariko Kawamura, Takeshi Nakaura, Shinji Naganawa","doi":"10.1007/s11547-024-01947-z","DOIUrl":null,"url":null,"abstract":"<p><p>The advances in artificial intelligence (AI) technology in recent years have been remarkable, and the field of radiology is at the forefront of applying and implementing these technologies in daily clinical practice. Radiologists must keep up with this trend and continually update their knowledge. This narrative review discusses the application of artificial intelligence in the field of musculoskeletal imaging. For image generation, we focused on the clinical application of deep learning reconstruction and the recently emerging MRI-based cortical bone imaging. For automated diagnostic support, we provided an overview of qualitative diagnosis, including classifications essential for daily practice, and quantitative diagnosis, which can serve as imaging biomarkers for treatment decision making and prognosis prediction. Finally, we discussed current issues in the use of AI, the application of AI in the diagnosis of rare diseases, and the role of AI-based diagnostic imaging in preventive medicine as part of our outlook for the future.</p>","PeriodicalId":20817,"journal":{"name":"Radiologia Medica","volume":" ","pages":"587-597"},"PeriodicalIF":9.7000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent topics in musculoskeletal imaging focused on clinical applications of AI: How should radiologists approach and use AI?\",\"authors\":\"Taiki Nozaki, Masahiro Hashimoto, Daiju Ueda, Shohei Fujita, Yasutaka Fushimi, Koji Kamagata, Yusuke Matsui, Rintaro Ito, Takahiro Tsuboyama, Fuminari Tatsugami, Noriyuki Fujima, Kenji Hirata, Masahiro Yanagawa, Akira Yamada, Tomoyuki Fujioka, Mariko Kawamura, Takeshi Nakaura, Shinji Naganawa\",\"doi\":\"10.1007/s11547-024-01947-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The advances in artificial intelligence (AI) technology in recent years have been remarkable, and the field of radiology is at the forefront of applying and implementing these technologies in daily clinical practice. Radiologists must keep up with this trend and continually update their knowledge. This narrative review discusses the application of artificial intelligence in the field of musculoskeletal imaging. For image generation, we focused on the clinical application of deep learning reconstruction and the recently emerging MRI-based cortical bone imaging. For automated diagnostic support, we provided an overview of qualitative diagnosis, including classifications essential for daily practice, and quantitative diagnosis, which can serve as imaging biomarkers for treatment decision making and prognosis prediction. Finally, we discussed current issues in the use of AI, the application of AI in the diagnosis of rare diseases, and the role of AI-based diagnostic imaging in preventive medicine as part of our outlook for the future.</p>\",\"PeriodicalId\":20817,\"journal\":{\"name\":\"Radiologia Medica\",\"volume\":\" \",\"pages\":\"587-597\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiologia Medica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11547-024-01947-z\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiologia Medica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11547-024-01947-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

近年来,人工智能(AI)技术的进步令人瞩目,放射学领域在日常临床实践中应用和实施这些技术的最前沿。放射科医生必须跟上这一趋势,不断更新他们的知识。本文综述了人工智能在肌肉骨骼成像领域的应用。在图像生成方面,我们重点研究了深度学习重建和最近出现的基于mri的皮质骨成像的临床应用。对于自动诊断支持,我们提供了定性诊断的概述,包括日常实践中必要的分类,以及定量诊断,可以作为治疗决策和预后预测的成像生物标志物。最后,我们讨论了人工智能在使用中的当前问题,人工智能在罕见疾病诊断中的应用,以及基于人工智能的诊断成像在预防医学中的作用,作为我们未来展望的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recent topics in musculoskeletal imaging focused on clinical applications of AI: How should radiologists approach and use AI?

The advances in artificial intelligence (AI) technology in recent years have been remarkable, and the field of radiology is at the forefront of applying and implementing these technologies in daily clinical practice. Radiologists must keep up with this trend and continually update their knowledge. This narrative review discusses the application of artificial intelligence in the field of musculoskeletal imaging. For image generation, we focused on the clinical application of deep learning reconstruction and the recently emerging MRI-based cortical bone imaging. For automated diagnostic support, we provided an overview of qualitative diagnosis, including classifications essential for daily practice, and quantitative diagnosis, which can serve as imaging biomarkers for treatment decision making and prognosis prediction. Finally, we discussed current issues in the use of AI, the application of AI in the diagnosis of rare diseases, and the role of AI-based diagnostic imaging in preventive medicine as part of our outlook for the future.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Radiologia Medica
Radiologia Medica 医学-核医学
CiteScore
14.10
自引率
7.90%
发文量
133
审稿时长
4-8 weeks
期刊介绍: Felice Perussia founded La radiologia medica in 1914. It is a peer-reviewed journal and serves as the official journal of the Italian Society of Medical and Interventional Radiology (SIRM). The primary purpose of the journal is to disseminate information related to Radiology, especially advancements in diagnostic imaging and related disciplines. La radiologia medica welcomes original research on both fundamental and clinical aspects of modern radiology, with a particular focus on diagnostic and interventional imaging techniques. It also covers topics such as radiotherapy, nuclear medicine, radiobiology, health physics, and artificial intelligence in the context of clinical implications. The journal includes various types of contributions such as original articles, review articles, editorials, short reports, and letters to the editor. With an esteemed Editorial Board and a selection of insightful reports, the journal is an indispensable resource for radiologists and professionals in related fields. Ultimately, La radiologia medica aims to serve as a platform for international collaboration and knowledge sharing within the radiological community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信