代表不同热历史的活轮虫线粒体活性和效率之间的温度驱动权衡。

IF 2.8 2区 生物学 Q2 BIOLOGY
Journal of Experimental Biology Pub Date : 2025-04-15 Epub Date: 2025-04-23 DOI:10.1242/jeb.249338
Agata M Burzawa, Katarzyna B Potera, Eugene P Sokolov, Inna M Sokolova, Aleksandra Walczyńska
{"title":"代表不同热历史的活轮虫线粒体活性和效率之间的温度驱动权衡。","authors":"Agata M Burzawa, Katarzyna B Potera, Eugene P Sokolov, Inna M Sokolova, Aleksandra Walczyńska","doi":"10.1242/jeb.249338","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondria generate up to 90% of cellular ATP, making it critical to understand how abiotic factors affect mitochondrial function under varying conditions. Using clones of the rotifer Lecane inermis with known thermal preferences, we investigated mitochondrial bioenergetic responses to four thermal regimes: standard temperature, optimal temperature, low suboptimal temperature and high suboptimal temperature. The study aimed to determine how mitochondrial parameters in intact organisms vary with temperature shifts and whether these responses differ across experimental populations. We assessed key bioenergetic parameters: routine respiration (representing overall metabolic rate), electron transport system capacity (indicative of oxidative phosphorylation potential) and proton leak rates (reflecting the energetic costs of maintaining mitochondrial membrane potential). Our results showed that populations with different thermal preferences displayed distinct mitochondrial responses to temperature changes, particularly at suboptimal temperatures. In contrast, responses were more uniform under standard and optimal conditions. Our findings demonstrated that metabolic plasticity in changing environments often involves trade-offs between mitochondrial efficiency and maintenance. By studying mitochondrial respiration at the whole-organism level, we revealed the complex temperature dependence of bioenergetic traits, providing insights beyond isolated mitochondria studies. This research highlights how a cascade of plastic responses spanning from mitochondrial responses to overall growth patterns is triggered by temperature changes, offering a valuable perspective in the context of global warming and organismal adaptation.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temperature-driven trade-off between mitochondrial activity and efficiency in live rotifers representing different thermal histories.\",\"authors\":\"Agata M Burzawa, Katarzyna B Potera, Eugene P Sokolov, Inna M Sokolova, Aleksandra Walczyńska\",\"doi\":\"10.1242/jeb.249338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mitochondria generate up to 90% of cellular ATP, making it critical to understand how abiotic factors affect mitochondrial function under varying conditions. Using clones of the rotifer Lecane inermis with known thermal preferences, we investigated mitochondrial bioenergetic responses to four thermal regimes: standard temperature, optimal temperature, low suboptimal temperature and high suboptimal temperature. The study aimed to determine how mitochondrial parameters in intact organisms vary with temperature shifts and whether these responses differ across experimental populations. We assessed key bioenergetic parameters: routine respiration (representing overall metabolic rate), electron transport system capacity (indicative of oxidative phosphorylation potential) and proton leak rates (reflecting the energetic costs of maintaining mitochondrial membrane potential). Our results showed that populations with different thermal preferences displayed distinct mitochondrial responses to temperature changes, particularly at suboptimal temperatures. In contrast, responses were more uniform under standard and optimal conditions. Our findings demonstrated that metabolic plasticity in changing environments often involves trade-offs between mitochondrial efficiency and maintenance. By studying mitochondrial respiration at the whole-organism level, we revealed the complex temperature dependence of bioenergetic traits, providing insights beyond isolated mitochondria studies. This research highlights how a cascade of plastic responses spanning from mitochondrial responses to overall growth patterns is triggered by temperature changes, offering a valuable perspective in the context of global warming and organismal adaptation.</p>\",\"PeriodicalId\":15786,\"journal\":{\"name\":\"Journal of Experimental Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1242/jeb.249338\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jeb.249338","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/23 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

线粒体产生高达90%的细胞ATP,这使得了解非生物因素如何在不同条件下影响线粒体功能变得至关重要。利用具有已知热偏好的轮虫Lecane inermis克隆,我们研究了线粒体对四种热环境的生物能量反应:标准温度、最佳温度、低次优温度和高次优温度。该研究旨在确定完整生物体的线粒体参数如何随温度变化而变化,以及这些反应是否在实验人群中有所不同。我们评估了关键的生物能量参数:常规呼吸(代表总代谢率)、电子传递系统(ETS)容量(表明氧化磷酸化电位)和质子泄漏率(反映维持线粒体膜电位的能量成本)。我们的研究结果表明,具有不同热偏好的种群对温度变化表现出不同的线粒体反应,特别是在次优温度下。而在标准条件和最优条件下,反应更为均匀。我们的研究结果表明,在不断变化的环境中,代谢可塑性通常涉及线粒体效率和维护之间的权衡。通过在整个生物体水平上研究线粒体呼吸,我们揭示了生物能量性状的复杂温度依赖性,提供了超越孤立线粒体研究的见解。这项研究强调了从线粒体反应到整体生长模式的一系列塑料反应是如何由温度变化触发的,为全球变暖和有机体适应提供了有价值的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Temperature-driven trade-off between mitochondrial activity and efficiency in live rotifers representing different thermal histories.

Mitochondria generate up to 90% of cellular ATP, making it critical to understand how abiotic factors affect mitochondrial function under varying conditions. Using clones of the rotifer Lecane inermis with known thermal preferences, we investigated mitochondrial bioenergetic responses to four thermal regimes: standard temperature, optimal temperature, low suboptimal temperature and high suboptimal temperature. The study aimed to determine how mitochondrial parameters in intact organisms vary with temperature shifts and whether these responses differ across experimental populations. We assessed key bioenergetic parameters: routine respiration (representing overall metabolic rate), electron transport system capacity (indicative of oxidative phosphorylation potential) and proton leak rates (reflecting the energetic costs of maintaining mitochondrial membrane potential). Our results showed that populations with different thermal preferences displayed distinct mitochondrial responses to temperature changes, particularly at suboptimal temperatures. In contrast, responses were more uniform under standard and optimal conditions. Our findings demonstrated that metabolic plasticity in changing environments often involves trade-offs between mitochondrial efficiency and maintenance. By studying mitochondrial respiration at the whole-organism level, we revealed the complex temperature dependence of bioenergetic traits, providing insights beyond isolated mitochondria studies. This research highlights how a cascade of plastic responses spanning from mitochondrial responses to overall growth patterns is triggered by temperature changes, offering a valuable perspective in the context of global warming and organismal adaptation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.50
自引率
10.70%
发文量
494
审稿时长
1 months
期刊介绍: Journal of Experimental Biology is the leading primary research journal in comparative physiology and publishes papers on the form and function of living organisms at all levels of biological organisation, from the molecular and subcellular to the integrated whole animal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信