Agata M Burzawa, Katarzyna B Potera, Eugene P Sokolov, Inna M Sokolova, Aleksandra Walczyńska
{"title":"代表不同热历史的活轮虫线粒体活性和效率之间的温度驱动权衡。","authors":"Agata M Burzawa, Katarzyna B Potera, Eugene P Sokolov, Inna M Sokolova, Aleksandra Walczyńska","doi":"10.1242/jeb.249338","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondria generate up to 90% of cellular ATP, making it critical to understand how abiotic factors affect mitochondrial function under varying conditions. Using clones of the rotifer Lecane inermis with known thermal preferences, we investigated mitochondrial bioenergetic responses to four thermal regimes: standard temperature, optimal temperature, low suboptimal temperature and high suboptimal temperature. The study aimed to determine how mitochondrial parameters in intact organisms vary with temperature shifts and whether these responses differ across experimental populations. We assessed key bioenergetic parameters: routine respiration (representing overall metabolic rate), electron transport system capacity (indicative of oxidative phosphorylation potential) and proton leak rates (reflecting the energetic costs of maintaining mitochondrial membrane potential). Our results showed that populations with different thermal preferences displayed distinct mitochondrial responses to temperature changes, particularly at suboptimal temperatures. In contrast, responses were more uniform under standard and optimal conditions. Our findings demonstrated that metabolic plasticity in changing environments often involves trade-offs between mitochondrial efficiency and maintenance. By studying mitochondrial respiration at the whole-organism level, we revealed the complex temperature dependence of bioenergetic traits, providing insights beyond isolated mitochondria studies. This research highlights how a cascade of plastic responses spanning from mitochondrial responses to overall growth patterns is triggered by temperature changes, offering a valuable perspective in the context of global warming and organismal adaptation.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temperature-driven trade-off between mitochondrial activity and efficiency in live rotifers representing different thermal histories.\",\"authors\":\"Agata M Burzawa, Katarzyna B Potera, Eugene P Sokolov, Inna M Sokolova, Aleksandra Walczyńska\",\"doi\":\"10.1242/jeb.249338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mitochondria generate up to 90% of cellular ATP, making it critical to understand how abiotic factors affect mitochondrial function under varying conditions. Using clones of the rotifer Lecane inermis with known thermal preferences, we investigated mitochondrial bioenergetic responses to four thermal regimes: standard temperature, optimal temperature, low suboptimal temperature and high suboptimal temperature. The study aimed to determine how mitochondrial parameters in intact organisms vary with temperature shifts and whether these responses differ across experimental populations. We assessed key bioenergetic parameters: routine respiration (representing overall metabolic rate), electron transport system capacity (indicative of oxidative phosphorylation potential) and proton leak rates (reflecting the energetic costs of maintaining mitochondrial membrane potential). Our results showed that populations with different thermal preferences displayed distinct mitochondrial responses to temperature changes, particularly at suboptimal temperatures. In contrast, responses were more uniform under standard and optimal conditions. Our findings demonstrated that metabolic plasticity in changing environments often involves trade-offs between mitochondrial efficiency and maintenance. By studying mitochondrial respiration at the whole-organism level, we revealed the complex temperature dependence of bioenergetic traits, providing insights beyond isolated mitochondria studies. This research highlights how a cascade of plastic responses spanning from mitochondrial responses to overall growth patterns is triggered by temperature changes, offering a valuable perspective in the context of global warming and organismal adaptation.</p>\",\"PeriodicalId\":15786,\"journal\":{\"name\":\"Journal of Experimental Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1242/jeb.249338\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jeb.249338","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/23 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Temperature-driven trade-off between mitochondrial activity and efficiency in live rotifers representing different thermal histories.
Mitochondria generate up to 90% of cellular ATP, making it critical to understand how abiotic factors affect mitochondrial function under varying conditions. Using clones of the rotifer Lecane inermis with known thermal preferences, we investigated mitochondrial bioenergetic responses to four thermal regimes: standard temperature, optimal temperature, low suboptimal temperature and high suboptimal temperature. The study aimed to determine how mitochondrial parameters in intact organisms vary with temperature shifts and whether these responses differ across experimental populations. We assessed key bioenergetic parameters: routine respiration (representing overall metabolic rate), electron transport system capacity (indicative of oxidative phosphorylation potential) and proton leak rates (reflecting the energetic costs of maintaining mitochondrial membrane potential). Our results showed that populations with different thermal preferences displayed distinct mitochondrial responses to temperature changes, particularly at suboptimal temperatures. In contrast, responses were more uniform under standard and optimal conditions. Our findings demonstrated that metabolic plasticity in changing environments often involves trade-offs between mitochondrial efficiency and maintenance. By studying mitochondrial respiration at the whole-organism level, we revealed the complex temperature dependence of bioenergetic traits, providing insights beyond isolated mitochondria studies. This research highlights how a cascade of plastic responses spanning from mitochondrial responses to overall growth patterns is triggered by temperature changes, offering a valuable perspective in the context of global warming and organismal adaptation.
期刊介绍:
Journal of Experimental Biology is the leading primary research journal in comparative physiology and publishes papers on the form and function of living organisms at all levels of biological organisation, from the molecular and subcellular to the integrated whole animal.